
Consistent Segmentation Based Color Correction for Coarsely Registered Images

Haoxing Wang∗†, Longquan Dai∗ and Xiaopeng Zhang∗
∗National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

†Research Center of Precision Sensing and Control, Institute of Automation, Chinese Academy of Sciences
Corresponding author: Xiaopeng Zhang, Email: xpzhang@nlpr.ia.ac.cn

Abstract—Local color correction methods transfer colors
between corresponding regions. However, inconsistent segmen-
tation between the source image and the target image tends to
degrade the correction result. In this paper, we propose a local
color correction technique for coarsely registered images. In
the segmentation step, it enforces the consistent segmentation
on both source and target images to alleviate the inaccurate
registration problem. In the color transfer step, it uses the
region confidences and the bilateral-filter-like color influence
maps to improve the color correction result. The experiment
shows the proposed method achieves improved color correction
results compared with the global methods and the recent local
color correction methods.

Keywords-consistent segmentation; color correction; condi-
tional random fields;

I. INTRODUCTION

The goal of image stitching is to register multiple images

geometrically and photometrically. Compared to geometric

registration, photometric registration has received relatively

simpler treatment. However, overlapping images with per-

ceptible color difference are inevitable in real world. One

of the examples is Google Street View, which contains

countless coarsely registered images with visually different

colors (figure 5).

In this paper, we propose a local color correction tech-

nique for coarsely registered images with unknown caption

condition, i.e., images can be taken at different time, dif-

ferent location or different cameras. Compared with state-

of-the-art local color correction methods [1], [2], it obtains

better results due to our consistent segmentation method

which alleviates the negative effect rising from inaccu-

rate registration, the bilateral-filter-like color influence map

which avoids the color over-smoothing across regions and

region confidences used to reject the inconsistent regions.

We show the application on coarsely registered images

acquired from Google Street View and achieve the best result

compared to related state-of-the-art local color correction

methods.

II. RELATED WORK

Wei and Mulligan [3] have given a unified evaluation of

color correction technique in the context of automatic multi-

view image and video stitching. Following this evaluation,

[4] and [2], which have been widely used in color transfer

research, are more suitable for the coarsely registered im-

ages. [2] could be the first option to try for general image

color correction task.

Global color transfer method [4] linearly transfers the

global color characteristics from the source image Is to the

target image It. The color transfer function is defined as:

Īti = μs +
σs

σt

(
Iti − μt

)
(1)

where Īti and Iti are, respectively, the corrected and original

values at pixel i of the target image. The (μp, σp) are the

mean and standard deviation of the global color distribution

and superscript p ∈ {s, t} associates them with source or

target image. However, inadequate consideration of color

statistical information and spatial information tends to result

in unsatisfying result.

According to the survey [3], local color correction ap-

proach [2] is recommended as the first option to try color

correction for general images. They construct a probabilistic

segmentation with the Gaussian Mixture Model (GMM)

assumption. The final corrected color is the weighted version

of global color transfer function (1). However, the assump-

tion of GMM will restrict the flexibility of segmentation.

Small region may not be properly segmented if they do not

contain enough pixels to form a distinctive Gaussian com-

ponent. Moreover, there is no guarantee that this algorithm

will produce consistent segmentation.

Oliveira et al. [1] proposes another local color correction

approach for the coarsely registered images. The target

image is segmented and projected onto the source image

using the inaccurate registration. The local color statistics

are calculated for each region. Then Color Influence Maps

(CIM), a weight mask measures the color similarity between

pixels and color regions, are used to produce a smooth

correction result [5]. The CIM is defined on the target image

as CIMk
i = exp

(
−3‖Iti − μt

k‖2
)

, where μt
k is the mean

of the region k. This approach was found to outperform [2]

in terms of color similarity. However, this local approach is

sensitive to inaccurate image registration which makes the

segments of target images contain a large set of inconsistent

colors. And the CIM tends to produce an over-smoothed

result for the reason that it combines colors of the segments

far away from the corrected pixel. Another problem may

degrade the color correction result is that source and target
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images may contain inconsistent parts. For instance, a tree

at the bottom left corner of the source image (figure 1(a))

does not exist in the target images (figure 1(b)). Apparently,

the inconsistent regions should not transfer their colors into

the other image.

In this paper, we propose an unsupervised local color cor-

rection method. The important advantages of our approach

are: 1. We introduce a unsupervised consistent segmentation

method to address the inaccurate registration problem, does

not need any color distribution assumption. 2. We calculate

the region confidences for each segment to rule out the

inconsistent parts of the image pair. 3. In the color transfer

step, we improve the CIM in [1] with spatial factor. The

improved CIM can be considered as a superpixel bilateral

filter and lead to a significant color correction improvement.

III. APPROACH OVERVIEW

Our color correction technique focus on the coarsely reg-

istered images with unknown capture conditions. As there is

no additional information such as pre-calibration information

of radiance or strong geometric constraint from the multi-

view camera systems, the correction method can only rely on

the colors of the images and coarsely registered geometric

constraint. The proposed correction method involves four

main steps: 1. The global color correction [4] is employed

to obtain an initial correction result. This step makes source

image and target image have the same mean and standard

deviation of the global color distribution. Thus, the color

difference between the corresponding pixels distributed in a

reasonable range. 2. Consistent segmentation is applied on

the coarsely registered image pair and region confidences

are estimated. 3. The improved CIMs are computed. 4. The

colors of the target image is corrected in lαβ color space [6],

using the consistent segmentation result and the improved

CIMs.

IV. CONSISTENT SEGMENTATION

Consistent segmentation means that if two pixels belong

to the same segment in one image, then their (real) cor-

responding pixels in the other image also belong to the

same segment (figure 1(a) and 1(b)). These two segments are

called the segment/region correspondence. Local color cor-

rection implicitly assumes that segments between the image

pairs are consistent. Therefore, non-consistent segmentation

will affect the quality of the color correction result.

However, there is no straightforward method to achieve

consistent segmentation on the source and target images.

We cannot directly project the source image segments to the

target image due to the inaccurate registration (figure 1(c)). If

target image and source image are segmented independently,

non-consistent segmentation result will be obtained due to

the color difference (figure 1(d)). The challenge of our

consistent segmentation problem is that the color similarity,

a constraint widely used in lots of applications, cannot be

(a). (b). (c). (d).

Figure 1. Consistent segmentation. (a), (b) are consistent segmented using
our method, the number will be used to show the corresponding CIMs in
figure 3. (c) directly uses the segmentation result of (a) and shows that
coarse registration introduces inaccurate segmentation. (d) is independently
segmented and non-consistent regions occur.

used due to the color difference. In fact, if the corresponding

parts of the images have similar colors, there would be many

existing methods to achieve the consistent segmentation.

However, the colors of the two images are usually different

in the correction problem. In our consistent segmentation

method, we make two assumptions as follows:

1. Although the colors between the source and target

images are different, color difference of the most corre-

sponding points varies in some narrow range (after global

correction). Too large and too small color difference are all

correspond to low probability. In our approach, we use the

color difference distribution and color difference features to

guide the consistent segmentation, which will be introduced

in IV-A and IV-B respectively.

2. Coarse registration is an important spatial constraint.

We assume that the position of the corresponding point

should appears in the neary region. For notion clarity,

we assume the target image has been resampled to the

same size as the source image by using the inaccurate

registration. Therefore, the pixel i in target image and

pixel i in source image are inaccurate pixel correspondence

induced by the inaccurate registration. It should be realized

that the inaccurate pixel correspondence is not the real

pixel correspondence. Hence, if pixel i belongs to the

target image, its real corresponding pixel j in source image

should be an element of the possible corresponding pixel

set Kw(i) = {u |dist (u, i) ≤ w} in source image, where

dist is some metric defined over pixel set. In this paper, the

possible corresponding pixel set Kw (i) is a square window

centered at pixel in source image with the window width

2w+1. Thus, when we are assigning a region label to pixel

i in target image, we only need to consider pixels in the

possible corresponding pixel set Kw (i), instead of the entire

image.

In our method, we initially use an unsupervised segmen-

tation method, mean shift algorithm, to segment the source

or target image. Each pixel i belongs to exactly one segment

identified by its region variable Rq
i = {1, 2, ..., N} and the

superscript q ∈ {s, t} associates it with source or target

image. The k-th region is then simply the set of pixels

P q
k whose region-correspondence variable equals k, i.e.,

P q
k = {i |Rq

i = k }.Without loss of generality, the source
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(a). (b).

Figure 2. Color difference distribution. (a) Total color difference histogram
of 85 test image pairs. Most pixel colors vary in small range. (b) An
example of region (not shown) color difference distribution estimated by
the Pazen-window approach.

image is always assumed to be initially segmented. Then the

target image is consistently segmented into corresponding

regions according to the source image. This problem is

formulated in a CRF framework and a detailed introduction

is given in IV-C.

A. Color difference distribution

Since the color similarity constraint cannot be used in

color correction, we use color difference distribution to

describe the possibility of the pixel in target image cor-

responding to the pixel in the source image. The color

difference is measured in Euclidian distance in lαβ color

space: d(Ii, Ij) = ‖Ii − Ij‖2 In order to show the char-

acteristics of the color difference distribution, we firstly

apply the global color correction method on 85 pairs of

precisely registered images with different colors in the

Middlebury Color Datasets. Then, we estimate the pixelwise

color difference histogram (figure 2(a)). We can see that

most colors vary in a narrow range, frome 0 to 40 with

the peak at 9 in this case, and significant color difference

corresponds to low probability. This is consistent with our

color difference assumption.

However, in our application, we cannot get the accurate

registration between the images. Thus, the inaccurate pixel

correspondences are directly used to calculate the pixelwise

color difference values Di = d (Iti , I
s
i ) with the implicit

assumption that the coarse registration error is relative small

and the nearby pixels are likely to have similar colors.

We use the Pazen-window [7] approach to derive a

nonparametric representation of the region color difference

distribution for each region in source image (figure 2(b)).

The region color difference distribution Prrek (x) on region

k is estimated using the region color difference set Sk =
{Di |i ∈ P s

k }:

Prrek (x) =
1

|Sk|h
|Sk|∑
i=1

K

(
x− Sk

i

h

)
(2)

where the kernel function K is taken to be a Gaussian

function. h is the bandwidth parameter.

The global color difference distribution Prgl(x) which

uses all the data in color difference set D is also estimated

and it will be used to estimate the region confidence for each

consistent segment.

B. Color difference feature

We now describe how the color difference feature, used

in color difference distribution, is calculated by the source

image Is, the target image It, the mean shift segmentation

Rs of source image and the possible corresponding pixel

set Kw(i) which encodes the coarse registration constraint.

The N-dimensional color difference feature ΔIi is associated

with pixel i in the target image. Its k-th component ΔIki ∈
[0,+∞) is the color difference between the pixel i and the

average color of the pixels which are the intersection of

possible corresponding pixel set Kw(i) and the k-th region

P s
k :

ΔIki =

⎧⎪⎨
⎪⎩
∥∥∥∥∥Iti −

∑

j∈Kw(i)

Is
j ·δ(Rs

j=k))

|Kw(i)∩P s
k |

∥∥∥∥∥
2

if Kw(i) ∩ P s
k �= φ

∞ otherwise
(3)

where δ (·) is the indicator function. Color difference feature

ΔIki combined with the corresponding region color differ-

ence distribution Prrek (x) measures the possibility of the

pixel i belongs to the region k. And it shows that it is almost

impossible for pixel i in target image to take the region label

k, if no pixel in Kw(i) belongs to the region k in source

image.

C. CRF model for consistent segmentation

We model the consistent segmentation problem in CRF

framework [8]. The CRF energy function is formulated with

a local color difference potential ψi and a pairwise edge

potential φij :

E
(
x
∣∣Is, It, Rs

)
=
∑
i∈G

ψi (xi|ΔIi, Rs)+
∑

(i,j)∈E
φij
(
xi, xj |Iti , Itj

)
(4)

where G = (V,E) is a graph defined over the image with 4-

connected neighborhood system. The discrete random field

X is defined over the image pixel set V = {1, 2, ...,M}.
Each random variable Xi ∈ X is associated with a pixel

i ∈ V and takes a value from the label set � = {1, 2, ..., N}.
Rs represents the segmentation on the source image and has

been obtained by the mean shift algorithm. Any possible

assignment of labels to the random variables x ∈ �N is a

segmentation on the target image. ΔIi is the N-dimensional

color difference feature associated with the pixel i in target

image. Consistent segmentation x∗ on the target image can

be solved by minimizing the CRF energy function above. As

the pairwise potentials are of the form of a Potts model, this

energy function can be minimized approximately using the

α-expansion algorithm [9]. Some consistent segmentation

results are shown in figure 4.

Local color difference potential. The local color dif-

ference potential ψ captures our assumption that color

difference between the corresponding points should be in

some reasonable range. It will give a large penalty on pixel
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correspondences with huge color difference. This potential

is referred as local for the reason that it is conditioned on the

segments of the images and it reflects the fact that different

regions may have different color distortions. For instance,

most times the sky in the photos is likely to remain in light

blue while the color of the building may change relatively

large due to the different illumination or different image

color balance introduced by the camera. The local color

difference potential ψ is defined as the negative logarithm

of the local color difference distribution:

ψi (xi|ΔIi, Rs) = − log Pr (xi|ΔIi, Rs) (5)

where Pr (xi|ΔIi, Rs) is the conditional probability of xi
given corresponding color difference features ΔIi and the

segmentation Rs on source image. Using the Bayes’ law:

Pr (xi|ΔIi, Rs) =
1

Z
Pr (ΔIi |xi, Rs ) Pr (xi |Rs )

=
1

Z
Prrek (ΔIxi

i ) Pr (xi |Rs )
(6)

where Z is the normalization factor. The likehood term

Pr (ΔIi |xi, Rs ) = Prrek (ΔIxi
i ) is exactly the region color

difference distribution estimated in IV-A. The prior term

Pr (xi |Rs ) is defined as:

Pr (xi |Rs ) =

{
1
n if Kw (i) ∩ P s

xi
�= φ

0 otherwise
(7)

where n denotes the number of regions in the segmentation

set Rs
K(i). The prior term enforces a hard constraint that it

is impossible for a pixel to take the region label which does

not appear in the possible corresponding pixel set Kw (i).
Edge potential. The pairwise edge potential, edge-

sensitive smoothness prior, has the form of a contrast sensi-

tive Potts model [10]:

φij
(
xi, xj |Iti , Itj

)
=

{
0 if xi = xj
g
(
Iti , I

t
j

)
otherwise

where the function g (Ii, Ij) is an edge feature based on

the difference in colors of neighboring pixels. It is typically

defined as:

g (Ii, Ij) = α1 + α2 exp
(
−β‖Ii − Ij‖2

)
where α1 and α2 are the weights assigning at each term. β

usually takes the form (2
〈∥∥Iti − Itj∥∥2〉)−1, where 〈·〉 means

average over the image.

D. Region confidence

After consistent segmentation, corresponding segments

can be obtained between the coarsely registered image pair.

However, the image pair may contain the inconsistent parts

such as a car appearing only in one image. In order to

prevent the color of the inconsistent parts transferring to the

other image, we use the global color difference distribution

Prgl(x) as the measure of confidence of the segment cor-

respondence obtained by the consistent segmentation. The

confidence of the segment correspondence k is defined as:

C(k) = Prgl (d (μs
k, μ

t
k)).

This measure will assign a low confidence if there exists

a significant color difference between the region correspon-

dences. As shown in figure 3(e), the dark segment in bottom

left corner, which contains tree in source image, is assigned

with a low confidence.

E. Parameter selection

Our consistent segmentation method involves three pa-

rameters: the window width w of the possible corresponding

pixel set Kw(i), the weight parameters α1 and α2 which

encode the trade-off between the local color difference

potential and edge potential. Large α1tends to suppress the

small segmentation region, and large α2 tends to cut the

segmentation boundary at low gradient position [10]. Ideally,

window width w should be equal to the max offset of the

corresponding pixels. However, as the actual max offset is

not known in the experiment images, w is set to be 3% of

image width in all the experiment in this paper. The α1 is

set between 30 and 100 and α2 between 0.1 and 10 in the

experiment of this paper.

V. LOCAL COLOR TRANSFER

The region correspondences are obtained after consistent

segmentation. Then, Local color statistics (μp
k, σ

p
k), the mean

and standard deviation of region k, can be estimated in each

image p ∈ {s, t}. The local color correction can be applied

by transferring the region color statistics from the source

image to the corresponding region in the target image:

Īti = μs
k +

σs
k

σt
k

(
Iti − μt

k

)
(8)

However, the color correction result is unnatural, especially

at the boundary of the regions, by using the simple lo-

cal transfer approach due to the complex color variation,

imperfect consistent segmentation, etc. Hence, we improve

the approach proposed in [1] to achieve the natural color

transition across the region.

A. CIM with spatial factor

The CIM used in [1] only considers the color similarity

factor and tends to produce over-smoothed result for the

reason that every region in the target image will influence

the color at pixel i. However, it makes little sense to combine

colors far from the pixel i. Therefore, we add the spatial

factor into the CIM and the improved CIM is defined as:

CIM
k

i = exp

(
−‖I

t
i − μt

k‖
2α2

2
)
exp

(
−distre(i, P

t
k)

2

2β2

)
(9)

where the distance between a pixel i to a pixel set P ⊂ V
is defined as distre (i, P ) = inf

j∈P
dist (i, j). α and β are the
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(a). (b). (c). (d). (e).

Figure 3. (a)-(d) Visualization of the improved CIMs of four segments.
Distance factor reduces weights of the far away pixels. Darker colors
mean lower contribution and each segment has high contribution at the
nearby region. (e) Confidence map. Dark color means low confidence.
The inconsistent segment correspondence at the bottom left corner which
contains tress in source image is assigned a significant low confidence.

range and spatial bandwidth parameters, respectively. In the

experiment of this paper, the α is set between 20 and 40

and the β is set to be 10% of the image width.

B. Weighted color correction with confidence

In order to prevent the colors of inconsistent segments

from transferring into the target image, the region confidence

is used to reject the low confidence segments in the color

transferring process. Finally, our color correction function

is the weighed version of the color transfer function (1).

It is composed of the local color statistics obtained from

the consistent segmentation, the improved CIMs and region

confidences:

Īti =

N∑
k=1

(
μs
k +

σs
k

σt
k
(Iti−μt

k)
)
× CIMk

i × 1[C (k) > ε]

N∑
k=1

CIM
k

i × 1[C (k) > ε]

(10)

where 1[x > ε] is the threshold function, equal to 1 when

x > ε, and 0 otherwise. In the experiments ε is set to be

0.5%.

VI. RESULTS AND DISCUSSIONS

We compare our method with the global approach (GL)

[4], probabilistic segmentation local color correction ap-

proach (PL) [2] recommended in the literature [3] and the

recent unsupervised local color correction approach (UL)

[1] which outperforms other local approach in terms of

color similarity. Coarsely registered real world images are

obtained from the Google Street View. 5 image pairs are the

same scenes used in [1]. As it is hard to get the real pixel

correspondences to measure the exact correction results, We

use the same metric proposed in [1] which measures the

improvement ratio of color correction method

CCmethod =
CSbase − CSmethod

CSbase
× 100 (11)

where method ∈ {GL, UL, PL, Pr1, P r2} , the values

respectively represent GL, UL, PL, proposed method without

distance factor in CIM and the proposed method. Color

similarity (CS) is defined as the three channel Euclid-

ian distance between source image and the input image

CS =
∥∥∥Isi − Iinputi

∥∥∥. The CSbase denotes the original

color similarity between the target image and source image.

CSmethod denotes the final color similarity between the

corrected image and the source image. Therefore, larger

improvement ratio CCmethod represents the better correction

result.

Table I lists the improvement ratios of the color correction

results. Scene#1 - #5 are the same images used in [1] and

Scene#6 - #10 are some images selected from Google Street

View. In order to show the importance of the improved CIM,

we also run our method using the simple CIM without dis-

tance factor. We can see that the proposed method achieves

the highest improvement ratio. The UL method performs

better than the PL method in most cases. It also shows

the effectiveness of the improved CIM. If we use the CIM

without distance factor, the performance of the proposed

method goes down in some of the images.

Figure 5 shows the color correction results of Scene#1,

#2, #3, #9, and #10. From top to bottom, the images are the

uncorrected image, correction with GL method, correction

with PL method, correction with UL method, correction

with proposed method and ground truth image. It shows

that the UL method and our method obtain better visual

results. The GL method does not perform well in the images

contain huge variety of colors, as in Scene#3 and #10. In

Scene#9, our method is more natural at the boundary region

for the sake of the local properties of the improved CIM.

In Scene#2, our method achieves better performance than

UL method for the reason that UL method transfers the

red color of the bridge into the sea with the problem of

inaccurate registration. And our method also performs better

in the sky by using the improved CIM which reduces blue

color transfered from the sea.

We implemented our method using Matlab 7.7.0, and

directly used the mean shift algorithm from [11] and α-

expansion algorithm from [9]. Our unoptimized code totally

spent 6 min for a 780 by 520 image pairs on an i3 2.27GHz

laptop, about 4.5 min for the mean shift algorithm and 2.5

min for the consistent segmentation and local color transfer,

while the local EM based algorithm from [3] requires about

10 min. Our method can be directly accelerated by replacing

the mean shift algorithm with some other more efficient

segmentation algorithms. Our method is slower than [1], but

it has better correction performance.

VII. CONCLUSION

This paper proposes a local color correction method for

coarsely registered images. The experiment result shows

that our local color correction method achieves the best

performance among the recent local color correction ap-

proaches. In our approach, a consistent segmentation method

is developed to alleviate the inaccurate registration problem.
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Figure 4. Consistent segmentation on real world images. The left image is source image and the right image is target image.

Scene# CCGL CCPL CCUL CCPr1 CCPr2

1 3.1 6.5 10.0 9.2 10.3
2 33.5 23.1 38.6 39.8 41.4
3 16.7 8.88 18.2 18.7 22.0
4 63.2 64.8 64.4 64.8 65.5
5 3.6 7.0 14.7 15.3 18.8
6 25.6 14.5 34.6 34.7 39.9
7 26.1 19.9 32.9 32.4 41.0
8 36.8 32.5 36.2 36.3 50.2
9 40.9 21.1 43.8 41.2 44.3

10 -2.2 12.9 12.1 13.7 14.3

Table I
IMPROVEMENT RATIOS OF THE REAL WORLD IMAGES.

(#1) (#2) (#3) (#9) (#10)

Figure 5. Some of correction results of registered real images. From top to
bottom, the images are the uncorrected image, correction with GL method,
correction with PL method, correction with UL method, correction with
proposed method and ground truth image. Scene#1 - #3 are images used in
[1]. Scene#9 and #10 are other images selected from Google Street View.

And the bilateral-filter-like color influence map is used to

reduce the over-smoothing effect. Furthermore, this method

can be easily extended to transfer colors to non-overlapped

regions.
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