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Abstract—Edge-preserving smoothing has recently emerged
as a valuable tool for a variety of applications in computer
graphics and image processing. Edge-preserving smoothing
using first order smoothness prior in the regularization term
under optimization framework tends to bias the smoothing
result forward the constant image. Although using high order
smoothness prior can alleviate this problem, it tends to obtain
the over-smoothed result. In this paper, we present an effective
and practical image editing method which can sharply preserve
the salient edges and at the same time smooths the continuous
regions using high order smoothness prior to achieve the
smoothing results different from the first order smoothness
prior. Finally, we demonstrate the effectiveness of our method
in the context of image denoising, image abstraction and image
enhancement.
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I. INTRODUCTION

Edge-preserving image smoothing has recently emerged

as a valuable tool for a variety of applications such as

denoising, tone mapping, non-photorealistic rendering in

computer graphics and image processing. Edge-preserving

smoothing can be achieved by local filtering methods such

as bilateral filter (BLF) [1] and guided filter [2]. However,

the local filtering methods such as BLF have to face the

problem of trade-off between edge-preservation abilities

and smoothing abilities [3] and tend to result in staircase

effect which is not acceptable for some applications. Edge-

preserving smoothing under optimization framework can

achieve more flexibly smoothing results. Most of these

methods [3][4] employ the first order smoothness prior as the

regularization term which bias the smoothing result forward

the constant image. In real world applications, different

applications demand different edge preserving ability and

smoothing ability. High order smoothness prior may be a

better model in some applications such as denoising, visual

reconstruction [5][6] . However, the difficulty of employing

the high order smoothness prior is that it tends to produce

an over-smoothed result.

We in this paper present an effective and practical image

editing method which can sharply preserve the salient edges

and at the same time smooths the continuous regions using

high order smoothness prior. Our method is formulated

under the weighted least squares framework. Unlike recent

methods [3][4] using first order smoothness prior in the

regularization term, our method can achieve edge-preserving

smoothing result by using high (typically 1, 2 or 3) order

smoothness prior due to the edge weights which can block

the unwanted influence from the pixels across the edge.

Since different order of the smoothness prior has different

smoothing performance, our method can flexibly control

the smoothing characteristic by changing the order of the

smoothness prior. Finally, we will show effectiveness of

our method in some applications such as cartoon image

denoising, image abstraction and image enhancement.

II. RELATED WORK

Edge-preserving smoothing can be achieved by local fil-

tering methods. BLF is widely used in many applications for

its simplicity and effectiveness and received much attention

in the literature. BLF assigns the low weights to the pixels

across the edge to preserve the salient edges. However, as the

weights never goes to zero, the pixels at the discontinuous

region will more or less affected by the pixels across the

edge. As a local smoothing operator, BLF involves a trade-

off between edge preservation and data smoothing. Applying

BLF iteratively can achieve a stronger smoothing result,

however, this operation tends to introduce the staircase

effect [7]. BLF is generalized to the joint bilateral filter

in [8], in which the weights are computed from another

guidance image rather than the filter input. The joint bilateral

filter is particular favored when the filter input is not reliable

to provide edge information.

Optimization based methods using regularization term are

more flexible compared with local filtering methods. The

first order smoothness prior has been widely used in the

quadratic optimization framework [9][10]. The spatially-

varying weights are carefully designed to obtain various pro-

cessing results. Farbman et al. [3] use first order smoothness

prior with the spatially-varying weights to perform edge-

preserving smoothing. The small weights are assigned at

the salient image edges to obtain edge preserving result.

This method is suitable for the multi-scale image decompo-

sition based applications. As the proposed spatially-varying

weights never go to zero, they constrain the edge preserving

ability. We have tried to directly replace the first order

smoothness prior in Farbman et al. [3] with the second order

and the experiments showed that edges can not be preserved

due to the greater range interactions between the pixels.
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Xu et al. [4] propose a L0 gradient minimization method

to obtain the smoothed result with ’sparse gradients’. This

method tends to flatten the smooth region and enhance the

salient edges and is suitable for the applications such as edge

enhancement, image abstraction.

Different applications demand different edge-preserving

ability and smoothing performance. We give an optimization

based method using high order smoothness prior which

can alleviate the staircase effect caused by the first order

smoothness prior. The difficulty of employing high order

smoothness prior in weighted least squares framework is

the over-smoothing problem caused by greater range pixel

interactions. We address this problem by using the edge

weights introduced below. The experiments show that our

method can sharply preserve the salient edges while using

high order smoothness prior.

III. EDGE GUIDED IMAGE SMOOTHING

We define the image on the integer lattice Z =
{(i, j) |1 � i � m; 1 � j � n} and the image I can be in-

dexed by q ∈ Z with the form Iq or I (i, j). Our goal is to

seek a new image S by minimizing the objective function

which is a balance between the faithfulness to input image I ,

and high order smoothness in piecewise continuous region:

min.
S

{∑
q

(Iq − Sq)
2

+ α(bx,qw
2
x,q(Δ

(n)
x Sq)

2 + by,qw
2
y,q(Δ

(n)
y Sq)

2)
} (1)

where bx,q , by,q ∈ {0, 1} are our binary edge weights
used to preserve the discontinuities, which will be discussed

below. The Δ
(n)
x and Δ

(n)
y are respectively the horizontal

and vertical n-th order finite difference operator. In this

paper n takes value 1, 2 or 3. The first order difference in

horizontal direction is Δ
(1)
x S (i, j) = S (i, j)− S (i, j − 1).

Iterating Δ
(1)
x leads to higher order terms in horizontal

direction, i.e., the second order difference is Δ
(2)
x S (i, j) =

S (i, j − 1)− 2S (i, j)+S (i, j + 1) and so forth. The Δ
(n)
y

has the similar form except the index. For simplicity we do

not consider the difference operators in diagonal directions,

however it is easy to extend to. The wx,q and wy,q are the

smoothness weights which can be calculated from the input

image I , a guidance image or just set to 1 depended on

the applications. The goal of the data term (Iq − Sq)
2

is to

minimize the distance between I and S, The second term,

smooth term, strives to achieve smoothness by minimizing

the n-th order derivatives of S. The smoothness parameter

α is responsible for the balance between the two terms;

increasing the value of α results in progressively smoother

image S.

Using matrix notation we rewrite the energy function (1):

min.
S

{
(I − S)

T
(I − S) + α(STD(n)T

x WT
x BxWxD

(n)
x S

+ STD(n)T
y WT

y ByWyD
(n)
y S)

} (2)

Figure 1: The “n active” criterion for second order case. Successive two
active edge weights can cut the direct relation in horizontal direction.

where D
(n)
x and D

(n)
y are the finite difference operator in

matrix form, Bx and By are diagonal matrices containing

the binary edge weights, Wx and Wy are diagonal matrix

containing the smoothness weights wx,q and wy,q .

The vector S that minimizes eq. (2) is uniquely defined

as the solution of the linear system

(I + α (Lx + Ly))S = I (3)

where I is the unit matrix, Lx = D
(n)T
x WT

x BxWxD
(n)
x

and Ly = D
(n)T
y WT

y ByWyD
(n)
y are the laplacian matrices

respectively corresponding to the horizontal and vertical

direction.

A. Edge weights

The difficulty of employing high order smoothness prior

is that the high order difference operators tend to yield the

over-smoothed result. This can be shown in the Δ
(2)
x S (i, j)

which introduces greater range pixel interaction than the first

order. This problem can be addressed by adding binary edge

weights bx,q and by,q in the smooth term. The edge weights

bx,q and by,q respectively mark the discontinuities in hori-

zontal and vertical directions at pixel q. If the edge weight

takes value 0 which means the discontinuity presence, we

call this weight is active at this pixel.

Edge preserving result can be achieved by weaken or cut

the relation between the pixels at the discontinuous regions.

If we want to use the edge weight to sharply preserve

the discontinuities using the high order smoothness prior,

the edge weight should satisfy the “n active” criterion:

The direct relation between two pixels in the horizontal or

vertical direction can be totally cut if at least successive n
number of edge weights are set to 0. The n is the order of

the prior.

We explained this criterion in the second order case.

Eq. (1) shows that if bx,(i,j) is 0, the term Δ
(2)
x S (i, j)

is eliminated from the smooth term. Therefore, weaker

smoothing effect is given at the corresponding pixels (clique

of size 3) {(i, j − 1) , (i, j) , (i, j + 1)}. Moreover, if we

want to totally cut the direct relation between the pixel (i, j)
and (i, j + 1), i.e., the S (i, j) and S (i, j + 1) never appear

in the same difference operator Δ
(2)
x Sq , we have to set both

bx,(i,j) and bx,(i,j+1) equal to 0 (Figure 1). In other word,

successive two edge weights, bx,(i,j) and bx,(i,j+1), equal
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to 0, can prevent the direct influence between pixel (i, j)
and (i, j + 1). Similarly, this fact also holds in the vertical

direction. Therefore, if a set of connective edge weights

satisfy the “two active” criterion, they form an edge which

can be sharply preserved.

The edge weighs can be calculated from the input image

or some guidance image. The most convenient way to

achieve the edge weight is firstly using some edge detection

method to achieve the initial binary edge weights, then adjust

it to satisfy the “n active” criterion.

B. Smoothing performance

We show the smoothing performance with different orders

and different α parameters in Fig. 2. We use Canny detector

to obtain the initial edges (Fig. 2b) and then modify them to

meet the “n active” criterion to get our edge weights. We use

the spatially varying smoothness weights in [3] (Fig. 2c):

wx,q =

(∣∣∣∣∂g∂x (q)

∣∣∣∣
β

+ ε

)−1

wy,q =

(∣∣∣∣∂g∂y (q)

∣∣∣∣
β

+ ε

)−1

(4)

where g is the log-luminance channel of the input image,

the exponent β (typically between 1.2 and 2.0) , while ε is

a small constant (typically 0.0001).

The result shows that our method can sharply preserve the

edges even using very large α. Using smoothness prior with

different order can achieve different smoothing characteris-

tic. This can be seen from the last row of the Fig. 2 that the

first order smoothness prior, assuming the underlying surface

is piecewise constant image, totally flatten the continuous

regions while the color changes more smoothly by using

the third order smoothness prior which assumes the under-

lying surface is quadratic. The second order is intermediate

between them. Therefore, our method can flexibly control

the final result by adjusting the prior order, smoothness

parameters α, smoothness weights w and edge weights b.
We will show several applications in the next section. Our

unoptimized matlab code takes about 6.8 seconds for a 700

by 600 color images on an i5 2.8GHz computer.

IV. APPLICATIONS

As our method can sharply preserve the edge by using

the edge weights in the high order smooth term, we can

flexibly choose the proper smoothness prior according to

the applications.

A. Cartoon image restoration

Cartoon images usually consist of strong edges and re-

gions with smooth color changes. Severe compression often

introduces apparent visual artifacts to cartoon images. As

the first order smoothness prior tends to flatten the color

region, we use the second order smoothness prior, which is

a better model for the regions with smooth color changes, in

the smooth term. In our experiments, we use Canny detector

(a) Orignal (b) Edges (c) Weights wy

α = 0.05

α = 0.5

α = 10

1st order 2nd order 3rd order

Figure 2: The smoothing performances using different order of prior. (a)
Input image. (b) Canny edge detection. (b) Visualization of the smoothness
weights wx. The first order smoothness prior tends to flatten the continuous
regions while the colors change smoothly in the third order case. The results
of the second order smoothness prior is intermediate between them.

to extract the edges from the input image and adjust them

to form the edge weights. We use a large α for the smooth

term, typically between 20 and 60, to alleviate the blocking

and ringing artifacts caused by the severe compression.

We experimented a set of methods, including BLF, Wang

et al. [11], BM3D [12], L0 [4] and our method with second

order smoothness prior, on the cartoon images which contain

the compression artifacts caused by block-based discrete

cosine transform (BDCT). For quantitative comparison, we

firstly compressed the noise free image by standard JPEG

with low quality values, and calculated the peak signal-noise

ratio (PSNR) and structural similarity (SSIM) [13] values af-

ter applying different methods. We have tested our methods

on many images and Fig. 3 shows one of the restoration

results. The statistics of the experiment in Table I show that

second order smoothness prior performs well in removing

the JPEG artifacts for cartoon images with smooth color

changes. BLF do not preserve the edges around the button

since the trade-off between the blocky artifact removal and

edge preserving ability (Fig. 3c). Although BM3D performs

well at the edge regions, it can not totally remove the

blocky artifacts which are different from the general noise

(Fig. 3d). Wang et al. [11] also do not totally remove the

blocky artifacts (Fig. 3e). Fig. 3f shows that L0 method bias

the image forward piecewise constant regions, therefore the

result is not faithful to the original image with smooth color

BLF BM3D Wang et al. L0 Our 2nd order

PSNR 0.9502 0.9539 0.9427 0.9355 0.9545
SSIM 37.6 38.1 36.8 35.7 38.3

Table I: PSNR and SSIM for image in Fig. 3.
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(a) Noisy image (b) Our 2nd order (c) BLF (d) BM3D (e) Wang et al. (f) L0 (g) Our 2nd order

Figure 3: Cartoon JPEG artifact removal. (a) A JPEG compressed image. (b) Our restoration result with second order smoothness prior. (c)-(g) Close-ups
of results of BLF, BM3D, Wang et al., L0, and ours.

(a) Original (b) Edge detection

1st

2nd

3rd

Base layer Abstraction result

Figure 4: Image abstraction using different order of smoothness prior.
Different order of smoothness prior obtains different smoothness and edge
enhancement styles.

changes. Our method using second order smoothness prior

is more suitable for cartoon image containing smooth color

changes. We also smoothed the cartoon images using third

order smoothness prior. However it did not perform as well

as the second order since it is more sensitive to the noise

which will be leaved in the final result.

B. Image abstraction

As our method can sharply preserve the edges and at the

same time strongly smooth the piecewise continuous regions

by setting a large regularization parameter α, typically

between 50 and 100, our method fits the non-photorealistic

abstraction. Our method does not need to progressively

smooth the images to obtain strong smoothing results as

in Farbman et al. [3]. We use similar abstraction strategy

introduced in L0 smoothing method to directly achieve

the abstraction results. We first smooth the original image

using a large α, then the edges are extracted from the

smoothed image and enhanced with the Kyprianidis et

al.[14] method. Finally the enhanced edges are added back

to achieve the non-photorealistic abstraction. Fig. 4 shows

one of our abstraction result using different smooth priors. It

is shown that the first order smoothness prior tends to obtain

piecewise constants abstraction results similar to L0, while

the second and third order smoothness prior can achieve

different abstraction styles that the colors change smoothly

in the continuous regions. More edges are enhanced in the

second and third order cases than first order since high order

smoothness prior can preserve high order discontinuities

such as roof edges [15].

C. Detail enhancement

Edge-preserving smoothing is often used to decompose

the original image into one or more base layers, then the

extracted detail layers are enhanced and added back to

achieve the enhanced image result. As different smooth

prior is sensitive to different structures, our method can

achieve different enhancement results. One problem of detail

enhancement is that the noise may also be exaggerated.

This artifact is more obvious when using the second order

smoothness prior which is suitable for denoising problem.

To address this problem, one option is to denoise the

image before the enhancement. In our experiments, we need

not additional denoising method to preprocess the images

contaminated by low level of noise. We first slightly smooth

the original image using second order smoothness prior to

reduce the noise, then decompose the smoothed image into

one or more base layers and add the enhanced detail layers

back to the original image to achieve the final results.

For comparison, we do not apply the denoising step in

this experiment. we decompose the input image into one

base layer and enhance the details with a scale factor 2

for all of the methods. It can be shown from Fig. 5 that

our first order result achieves the similar result to the L0

method. Both results achieve more obvious enhancement

result than Farbman et al. [3] (WLS) due to the flatter base

layers. Our second and third order smoothness prior methods

can enhance the details which cannot be detected by the first
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Input image Edge detector Close-up

WLS

L0

1st

2nd

3rd

Base layer Enhanced Close-up

Figure 5: Detail enhancement. First row is the input image. The rest of
the images, from left to right, are the base layers, enhanced results and the
close-ups of the enhanced results.

order. It is shown clearly in the close-ups that subtle textures

on the flowers are enhanced in the second and third order

methods.

V. CONCLUSION

In this paper, we present an effective and practical image

editing method which can sharply preserve the salient edges

and at the same time smooth the continuous region using

high order smoothness prior. We use the edge weights

which satisfy the “n active” criterion to overcome the over-

smoothing problem caused by the high order smoothness

prior. Our method can flexibly control the smoothing per-

formance by changing the order of the prior. The limitation

of our method is that the edge weights depend on some edge

detection methods. Low quality edge detection results will

result in unnatural smoothing results. In the future work we

will try to add the edge variables into the energy function.

Simultaneously optimizing the edge variables and the output

image may be more attractive.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (Nos. 61331018, 61271430, 61271431,

and 61172104).

REFERENCES

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images,” in Computer Vision, 1998. Sixth International
Conference on, 1998, pp. 839–846.

[2] K. He, J. Sun, and X. Tang, “Guided image filtering,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
vol. 35, no. 6, pp. 1397–1409, 2013.

[3] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-
preserving decompositions for multi-scale tone and detail
manipulation,” ACM Trans. Graph., vol. 27, no. 3, pp. 67:1–
67:10, Aug. 2008.

[4] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via
l0 gradient minimization,” ACM Transactions on Graphics
(SIGGRAPH Asia), 2011.

[5] O. Woodford, P. H. S. Torr, I. Reid, and A. Fitzgibbon,
“Global stereo reconstruction under second order smoothness
priors,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, 2008, pp. 1–8.

[6] A. Blake and A. Zisserman, Visual Reconstruction, ser. Arti-
ficial Intelligence. Mit Press, 2003.

[7] A. Buades, B. Coll, and J. M. Morel, “The staircasing effect
in neighborhood filters and its solution,” Image Processing,
IEEE Transactions on, vol. 15, no. 6, pp. 1499–1505, 2006.

[8] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele,
“Joint bilateral upsampling,” ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2007), vol. 26, no. 3, p. to
appear, 2007.

[9] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless, “Gra-
dientshop: A gradient-domain optimization framework for
image and video filtering,” ACM Trans. Graph., vol. 29, no. 2,
pp. 10:1–10:14, Apr. 2010.

[10] R. Fattal, D. Lischinski, and M. Werman, “Gradient do-
main high dynamic range compression,” ACM Trans. Graph.,
vol. 21, no. 3, pp. 249–256, Jul. 2002.

[11] G. Wang, T.-T. Wong, and P.-A. Heng, “Deringing cartoons
by image analogies,” ACM Trans. Graph., vol. 25, no. 4, pp.
1360–1379, Oct. 2006.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
denoising by sparse 3-d transform-domain collaborative filter-
ing,” Image Processing, IEEE Transactions on, vol. 16, no. 8,
pp. 2080–2095, 2007.

[13] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image
quality assessment: from error visibility to structural similar-
ity,” Image Processing, IEEE Transactions on, vol. 13, no. 4,
pp. 600–612, 2004.
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