
Accelerate bilateral filter using Hermite
polynomials

Longquan Dai, Mengke Yuan and Xiaopeng Zhang
ELECT
The bilateral filter (BF) as an edge-preserving lowpass filter is a
valuable tool in various image processing tasks, including noise
reduction and dynamic range compression. However, its computational
cost is too high to apply in the real-time processing tasks as the range
kernel, which acts on the pixel intensities, making the averaging
process nonlinear and computationally intensive, particularly when
the spatial filter is large. Using the well-known Hermite polynomials,
a BF accelerating method is proposed, which reduces the compu-
tational complexity from O(r2n) to O(n), where r denotes the filter
size of a BF and n is the total number of pixels in an image.
Introduction and related work: The bilateral filter (BF) [4] is a valuable
tool for many computer vision and computer graphic applications such
as denoising, demosaicing and optical-flow estimation. To preserve the
detail information in the image, a BF computes its results by a weighted
average of the pixels in a neighbourhood with signal-dependent coeffi-
cients. This is significantly different from the traditional FIR lowpass
filter that employs a predefined convolution kernel to smooth images.
Although the change endows the BF the ability to detect edges and to
only average the pixels on the same side of an edge, the advantages
come at a cost as the BF substitutes the efficient linear convolution
with the time-consuming nonlinear convolution.

The brute-force implementation of a BF calculates the filtering results
Ibf with O(r2n) complexity by directly performing the nonlinear convo-
lution on the target image I as illustrated in (1) and (2)

Ibfp = 1

W bf
p

∑
q[Vp

Gss
(p− q)Gsr

(Ip − Iq)Iq (1)

with W bf
p =

∑
q[V

Gss
(p− q)Gsr

(Ip − Iq) (2)

where Gss
(p− q) = e−ss‖p−q‖2 and Gsr

(Ip − Iq) = e−sr(Ip−Iq)
2
are the

linear Gaussian spatial kernel and the nonlinear Gaussian range
kernel, respectively, Ωp denotes the neighbourhood of the pixel p.
From (1) and (2), we can easily find out that both the nonlinearity and
the signal-dependent coefficients of the BF are introduced by the
range kernel Gsr

term as the parameters of Gsr
involves the intensity

image I. If the nonlinear kernel Gsr
can be ‘linearised’, the smoothing

results of BF could be computed efficiently. Specifically, for an image
of size n, we can compute the linear convolution for arbitrary window
size Ωp with arbitrary kernel at the cost of n log n operations using
the Fourier transform. Moreover, this can be further reduced to a total
of O(n) operations [5] by the recursive implementation of the
Gaussian filter.

In the literature, Porikli [2] employed the Taylor series to linearise the
nonlinear term of the BF. Roughly speaking, the Gaussian function can
be approximated by the first M terms of its Taylor expansion with arbi-
trary accuracy, as illustrated in (3)

e−srx2 =
∑M
i=0

(−1)i
x2i

i!
(3)

Then, applying the binomial formula (x+ y)i = ∑i
k=0

i
k

()
xi−kyk to

(3), we can write e−sr(Ip−Iq)
2
as

e−sr(Ip−Iq)
2 =

∑M
i=0

(−1)i

i!

∑2i
k=0

2i
k

()
I2i−k
p Ikq (4)

Furthermore, plugging (4) into (1), the value Ibfp can be figured out
by (5)

Ibfp = 1

W bf
p

∑M
i=0

∑2i
k=0

(−1)i

i!
2i
k

()
I2i−k
p

∑
q[Vp

Gss
(p− q)I k+1

q (5)

Note that the inner sum
∑

q[Vp
of (5) is just the linear convolution per-

formed on the image Ik+1. According to [5], the operation could be com-

pleted in constant time. Additionally, the outer sums
∑M

i=0

∑2i
k=0 of (5)

are pointwise operations that can also be computed in linear time. In a
RONICS LETTERS 25th September 2014 Vol
similar way, we can reduce the computational complexity of the
denominator W bf

p of BF to O(n) by substituting (4) with Gsr
in (2).

Chaudhury et al. [1] argued that the Taylor expansion is inaccurate for
approximating the Gaussian function as it only uses polynomials to
approximate an exponential function. Instead, they exploited trigono-
metric functions to approximate the Gaussian function by proving

e−srx2 = lim
N�1

cos
srx����
2N

√
()[]N

(6)

Equation (6) implies that for a sufficiently largeM, the value on the right
part approaches the value of the Gaussian function on the left part

e−srx2 = cos
srx����
2M

√
()[]M

(7)

Jointly employing the binomial formula and the angle addition formula
cos(x− y) = cos(x)cos(y) + sin(x)sin(y), Chaudhury et al. transform

e−sr(Ip−Iq)
2
into (8)

e−sr(Ip−Iq)
2 =

∑M
k=0

M
k

()
CM−k
p SkpC

M−k
q Skq (8)

where C = cos srI/
����
2M

√()
and S = sin srI/

����
2M

√()
. Then, plugging

(8) into (1), Chaudhury et al. calculate Ibfp by

Ibfp = 1

W bf
p

∑M
k=0

M
k

()
CM−k
p Skp

∑
q[Vp

Gss
(p− q)CM−k

q Skq Iq (9)

Similar to (5), the inner sum
∑

q[Vp
of (9) is the linear convolution per-

formed on the image CM− kSk and the outer sum
∑M

k=0 is the pointwise
operation. The running cost of the denominator W bf

p of BF can also be
reduced to O(n) in the same way. Therefore, we say that the overall com-
plexity is O(n).

Although both Porikli and Chaudhury claimed that the computational
cost of their methods is linear, the actual running cost is markedly differ-
ent. Specifically, the method of Porikli involves computing the auxiliary
images Ik+1, whereas the method of Chaudhury needs to compute the
auxiliary images CM− kSk. Thus, unlike Porikli’s method which only
performs multiplication and addition operations, Chaudhury’s method
not only performs multiplication and addition operations, but also calcu-
lates the cosine function and the sine function. As is known to all, the
floating point addition or subtraction requires 6 clock cycles, multipli-
cation requires 8 clock cycles and division requires 30–44 clock
cycles on the Intel ×86 processor. However, the cosine or sine function
or exponential function requires between 180 and 280 clock cycles.
Therefore, Chaudhury’s method must pay for more running time. The
extra cost is not a waste as it is spent on pursuing more accurate filtering
results. Now, our question is whether we can reduce the extra cost as in
Porikli’s method while producing accurate results as in the method of
Chaudhury. The answer is yes. Our method takes in the advantages of
the two methods.

Proposed method: We employ the Hermite polynomials together with

the exponential function to approximate e−sr(Ip−Iq)
2
. The Hermite poly-

nomials are a classical orthogonal polynomial sequence that arises in
probability, combinatorics and physics. We list the first five terms in
Table 1 as examples to give the flavour of the polynomials. More infor-
mation can be found in [3] and references therein. To derive the approxi-
mation formula, we take advantage of the generating function.
Specifically, the Hermite polynomials are given by the exponential gen-
erating function

e(2xt−t2) =
∑1
i=0

Hi(x)

i!
ti (10)

Here, we truncate the series and select the first M terms to approxi-
mate e(2xt−t2) as illustrated in (11)

e(2xt−t2) =
∑M
i=0

Hi(x)

i!
ti (11)
. 50 No. 20 pp. 1432–1434

Then, by employing (11), e−sr(Ip−Iq)
2
can be rewritten as

e−sr(Ip−Iq)
2 = e−srI2p e(2(

��
sr

√
Ip)(

��
sr

√
Iq)−(

��
sr

√
Iq)

2)

=
∑M
i=0

e−srI2p Hi(
���
sr

√
Ip)

s(i/2)
r

i!
I iq (12)

Furthermore, we plug (12) into (1) and obtain the value Ibfp by calculat-
ing

Ibfp = e−srI2p

W bf
p

∑M
i=0

∑i

k=0

2i

k

()
Hi(

���
sr

√
Ip)I i−k

p si/2
r

i!
∑
q[Vp

Gss
(p− q)Ik+1

q

(13)

Once again, the inner sum
∑

q[Vp
of (13) is the linear convolution per-

formed on the image Ik+1
q and the outer sum of (13) is the pointwise

operations. A similar accelerating procedure can also be applied to the
denominator W bf

p of BF. We therefore conclude that the computational
complexity of our accelerating algorithm is also O(n).

Table 1: First five Hermite polynomials
0
 H0(x) = 1
1
 H1(x) = 2x
2
 H2(x) = 4x2− 2
3
 H3(x) = 8x3− 12x
4
 H4(x) = 16x4− 48x2 + 12
Analysis and experiment: In this section, we implement the three algor-
ithms by MATLAB and exhibit the computational resource consump-
tion of the three methods in the memory limited system and the
desktop personal computer (PC). In the memory limited system, all
intermediate values need to be computed repeatedly because there is
no redundant space to cache them. In (5), (9) and (13), the inner sum
of the three algorithms takes two different operations. The first is the
convolution that performs on the auxiliary images such as Ik+1 and
CM− kSk. The second is computing the auxiliary images. We only take
the second into account, as the cost of the convolution operation of
the three methods are the same. Since the inner sum of both Porikli’s
method and ours only involve the polynomial functions Ik+1, the
running cost only depends on the upper bound of k. The bounds of
Porikli’s method and ours are 2M and M, respectively. By a simple cal-
culation, we can find that the inner sums of (5) and (13) totally need nM
(2M + 1) multiplications and nM(M + 1)/2 multiplications. In contrast,
the inner sum of (9) consumes nM(M + 3) multiplications plus nM
cosine operations and nM sine operations. To calculate the running
cost of the outer sum of (5) and (13), we rule out the cost of computing
the coefficients in the outer sum as they can be precomputed. Indeed, the

outer sum
∑M

i=0

∑2i
k=0 of (5) calculates the value of a polynomial with

degree 2M, then the running cost is n(M(2M + 3) + 1) multiplications

and n(2M− 1) additions. Unlike (5), the outer sum
∑M

i=0

∑i
k=0 of

(13) can be transformed to an exponential function by a polynomial
with degree M. The running cost is thus n exponential operations with
n(M(M + 3)/2 + 2) multiplications and n(M− 1) additions. In contrast,
the outer sum of (9) costs a lot as the operation computes a trigonometric
polynomial with degreeM. Therefore, the total running cost is n(M(M +
3) + 1) multiplications, n(M− 1) additions, nM cosine operations and
nM sin operations. For the convenience of comparison, we list the
running cost of computing the numerator (1) in Table 2. The cost of cal-
culating the denominator (2) is intentionally omitted as it is similar to
Table 2 for the three methods. We can observe from Table 2 that the
computational burden of Chaudhury’s method is the heaviest.
Although our method involves the exponential function, the method
of Porikli will pay more running time on calculating the outer sum∑M

i=0

∑2i
k=0. Thus, the overall running cost of the two methods is

almost the same. Unlike the memory limited system, the desktop PC
usually has adequate space to cache all intermediate results. If we
could precompute the intermediate values and store them in the
memory, lots of running time can be saved. By sticking to the idea, a
common way used by Porikli and Chaudhury to accelerate the comput-
ing speed is to calculate the auxiliary images Ik+1, CM− kSk and ICM− kSk

in advance. In this manner, we could easily eliminate the running cost of
the inner sum and significantly reduce the costs of the outer sum.
ELECTRONICS LETTERS 25th S
However, the expense is a huge memory consumption as shown in
the ‘mem’ column of Table 3, whereas the three methods in the
memory limited system only occupy n word memory. A closer look
at Table 3 suggests that Porikli’s method consumes the most compu-
tational resource. In contrast, the memory consumption of our method
is only half of Chaudhury’s method, while the running cost is only a
little larger than Chaudhury’s best method.

Table 2: Running cost in memory limited system
e
ptembe
Computational complexity of inner sum operation
add
r 2014
mul
Vol. 50
exp
No. 2
sin
0 p
cos
Porikli [2]
 0
 nM(2M + 1)
 0
 0
 0
Chau [1]
 0
 nM(M + 3)
 0
 nM
 nM
Ours
 0
 nM(M + 1)/2
 0
 0
 0
Computational complexity of outer sum operation
add
 mul
 exp
 sin
 cos
Porikli [2]
 n(2M − 1)
 n(M(2M + 3) + 1)
 0
 0
 0
Chau [1]
 n(M− 1)
 n(M(M + 3) + 1)
 0
 nM
 nM
Ours
 n(M− 1)
 n(M(M + 3)/2 + 2)
 n
 0
 0
Table 3: Running cost and memory consumption in desktop PC
Running cost of outer sum
add
 mul
 exp
 sin
 cos
 mem
Porikli [2]
 nM
 nM(2M + 1)
 0
 0
 0
 n(2M + 1)
Chau [1]
 nM
 nM(M + 1)/2
 0
 0
 0
 2nM
Ours
 nM
 n(M(M + 1) + 2)/2
 0
 0
 0
 n(M + 2)
To illustrate the tradeoff between speed and accuracy, we conduct two
experiments. First, we fix M = 5 to compare the filtering results of three
accelerating methods with the result of the brute-force implementation.
The peak signal-to-noise ratio (PSNR) is employed to measure the simi-
larity. The higher score implies the more accurate result. The frames per
second (FPS) is exploited to measure the processing speed. Similarly, a
larger index means a higher speed. The statistical data is reported in
Table 4, where the size of the test image is 256 × 256. In the second
experiment, we keep the PSNR index unchanged and measure the
speed of each method. Strictly speaking, the PSNR indices cannot be
kept the same as they are affected by various reasons. Here, we tweak
M to keep them as close to the same as possible and list the statistical
data in Table 4. From the table, we can learn that our method takes in
the advantages of the two methods of Porikli and Chaudhury. The
speed approaches that of Porikli’s method while the approximation
accuracy is nearly the same as Chaudhury’s method.

Table 4: Tradeoff between speed and accuracy
Fixed M = 5
 Fixed PSNR
Ours
 Porikli [2]
 Chau [1]
 Ours
 Porikli
 Chau
PSNR
 43.26
 42.95
 43.32
 50.26
 50.29
 50.25
FPS
 6.3
 6.5
 2.6
 2.9
 2.3
 1.4
Conclusion: In this Letter, we have proposed a novel method to accel-
erate the BF using the well-known Hermite polynomials. The running
cost and memory consumption are almost equal to Porikli’s method.
More importantly, the approximation accuracy is similar to
Chaudhury’s method.

Acknowledgments: This work was partially supported by the National
Natural Science Foundation of China (61331018, 61332017,
91338202, and 61271430), and partly by the open funding project of
the State Key Laboratory of Virtual Reality Technology and Systems,
Beihang University (no. BUAA-VR-14KF-10).

© The Institution of Engineering and Technology 2014
31 July 2014
doi: 10.1049/el.2014.2758

Longquan Dai, Mengke Yuan and Xiaopeng Zhang (NLPR, Institute of
Automation Chinese Academy of Sciences, Beijing, People’s Republic of
China)

E-mail: lqdai@nlpr.ia.ac.cn
p. 1432–1434

References

1 Chaudhury, K.N., Sage, D., and Unser, M.: ‘Fast o(1) bilateral filtering
using trigonometric range kernels’, IEEE Trans. Image Process., 2011,
20, (12), pp. 3376–3382

2 Porikli, F.: ‘Constant time o(1) bilateral filtering’. IEEE Conf. on
Computer Vision and Pattern Recognition, Anchorage, AK, USA, June
2008, pp. 1–8

3 Temme, N.M.: ‘Special functions: an introduction to the classical func-
tions of mathematical physics’ (J. Wiley & Sons, New York, USA,
1996), ISBN 0-471-11313-1
ELECTRONICS LETTERS 25th September 2014 Vol
4 Tomasi, C., and Manduchi, R.: ‘Bilateral filtering for gray and color
images’. Int. Conf. on Computer Vision, Bombay, India, January 1998,
pp. 839–846

5 Young, I.T., and van Vliet, L.J.: ‘Recursive implementation of the
Gaussian filter’, Signal Process., 1995, 44, (2), pp. 139–151, ISSN
0165-1684
. 50 No. 20 pp. 1432–1434

