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The bilateral filter (BF) has showed great effectiveness for a variety of
problems. However, its brute-force implementation is time consuming.
One way of accelerating a BF is to approximate the nonlinear range
kernel of the BF by a set of linear time shiftable kernels. To achieve
this goal, only finite values of the kernel of the BF have been used
to perform smoothing due to the quantisation of digital images.
Thus, the filtering results are not changed by substituting the range
kernel with the function having the same values at finite discrete
points. The Lagrange interpolation polynomial can exactly pass
through predefined points and therefore can be employed to replace
original kernels for accurate by accelerating the BF. To speed up the
BF at the cost of small approximation error, two approximation
methods are proposed to obtain the optimal fitting polynomial. The
performance of the proposed method is validated by extensive
experiments.
Introduction: The bilateral filter (BF) [1] is a valuable tool for many
computer vision and graphic applications and its output at the pixel
location x = (x, y) is given by

Îx =
∑

y[N r
x
Ks(‖y− x‖)Kr(Iy − Ix)Iy∑

y[N r
x
Ks(‖y− x‖)Kr(Iy − Ix)

(1)

whereN r
x is the square window centred at x with radius r. For a BF, the

kernels Ks( · ) and Kr( · ) determine how the spatial and intensity differ-
ences are treated. The most commonly used kernel in the literature is the
Gaussian kernel Gσ(z) = exp (−z2/2σ2). Other unusual kernels are
reported in [2]. Due to the signal-dependent range kernel Kr(Iy− Ix),
the BF becomes an edge-aware filter. On the flip side of the power,
the complexity of the brute-force implementation is O(|N r||I |) that is
too intensive for time-critical applications, where |I| is the number of
pixels in the entire image and |N r| the number of pixels in the
windowN r

x centred at x. The inefficiency arises in Kr(Iy− Ix) introduces
nonlinearity to the BF and therefore rules out lots of fast calculation
techniques. One solution is to approximate the nonlinear range kernel
by a set of linear time shiftable kernels [2], where the linear time
means the computational complexity is O(|I|) which is independent of
the window radius r. In the literature, existing accelerating methods of
a BF roughly fall into two categories:

† Series expansion-based BF: This kind of method employs shiftable
kernels [2] to represent the Gaussian range kernel. Chaudhury et al.
[4] reduce the Gaussian kernel to the raised cosine range kernel. Dai
et al. [3] propose Hermite polynomials to decompose the Gaussian
kernel. Our method also belongs to this kind of method.
† Histogram-based BF: BF can be computed in linear time by the fast
integral histogram if Ks( · ) is the box filter. Zhang et al. [5] use the de
Moivre-Laplace theorem to decompose the Gaussian kernel into Ms

box functions. Gunturk [6] employs least-squares optimisation to find
the optimal coefficients bs

i that minimise the approximation error
(Ks(‖y− x‖)−∑Ms

i=1 b
s
i BN ri

x
(‖y− x‖))2. In contrast, Pan [7] exploited

sparsity to determined the coefficients bs
i .

Optimal fitting polynomial: Since the intensity values of digital images
are quantised to Nr discrete values rj, 1≤ j ≤Nr, only finite discrete
points Kr(rj) of a BF’s range kernel are used to compute the filtering
results. We employ the least-squares fitting algorithm to find the
optimal fitting polynomial that approximates to the range kernel Kr( · )
with the smallest approximation error at the discrete points (rj, Kr(rj))
and replace the range kernel Kr( · ) in (1) by the optimal polynomial.
In this way, the nonlinear convolution of Kr( · ) can be decomposed
into a set of box filters. More importantly, we can compute the box
filter in linear time by the fast histogram technique [7].

To obtain a versatile fitting polynomial Pr( · ), it is reasonable to

expect that the optimal Pr(z) =
∑Mr

i=0
br
i z

i can exactly pass through

some predefined points in the set {(rj, Kr(rj))} while minimising the
approximation error for the remaining points. Hence, we divide {(rj,
Kr(rj))} into two subsets, where the first L points denote the points
being used to compute the approximation error and the last Nr − L
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points represent the predefined constrain points. Considering the two
subsets, we employ the constrained quadratic optimisation (2) to
compute the coefficients br

i of the optimal fitting polynomial Pr( · )

min
br
i

∑L
j=1

(Kr(rj)−
∑Mr

i=0
br
i (rj)

i)2

∑Mr

i=0
br
i (rj)

i ≥ 0, 1 ≤ j ≤ L

s.t.
∑Mr

i=0
br
i (rj)

i = Kr(rj), L+ 1 ≤ j ≤ Nr

(2)

The constraints
∑Mr

i=0
br
i (rj)

i ≥ 0 are added to prevent the negative

fitting curve complained of by Chaudhury et al. [4]. Moreover, the
optimisation can be efficiently solved by the Matlab function ‘lsqlin’.

Case 1: L = 0. The optimal polynomial Pr( · ) passes through all Nr

points in the set {(rj, Kr(rj))} if the degree Mr of the polynomial Pr( · )
is no less than Nr− 1. Actually, the closed form solution is nothing
but the Lagrange interpolation polynomial (3) which is capable of
exactly passing through all Nr points in the set {(rj, Kr(rj))}.

Pr(z) =
∑Nr

i=1

Kr(ri)
∏Nr

j=1,j=i

z− rj
ri − rj

(3)

Although substituting Pr( · ) with Kr( · ) does not change the filtering
result, adopting it to speed up the BF is not very efficient because the
high degree polynomial increases the computation complexity. For
instance, rj∈ {−255, …, 255} for the 8-bit image. In this situation,
the degree of Pr( · ) is up to 510, which implies 510+ times linear filter-
ing for accelerating the BF. One possible solution is to relax the exact
equality constraints.

Case 2: L =Nr. The optimal polynomial does not prefer any special
points, and the constrained optimisation (2) is free to decide the
optimal polynomial Pr( · ) with an arbitrary degree. Although the pro-
duced Pr(rj) is no longer equal to Kr(rj), the approximation error is
usually very small. We can safely replace Kr(rj) by Pr(rj) without intro-
ducing significant numeric error. More importantly, the degree of Pr( · )
will be very low compared with the Lagrange polynomial. However,
when L =Nr, (2) is not appropriate to compute the optimal fitting
curve for the non-smoothing range kernel Kr( · ).

Case 3: 0 < L <Nr. The optimal polynomial Pr( · ) exactly passes
through the last Nr− L predefined points in the set {(rj, Kr(rj))} with
the smallest approximation error for the first L points in the set {(rj,
Kr(rj))}, if the degreeMr≥ Nr− L− 1. Note that the optimal polynomial
Pr( · ) is a compromise for the first two cases. In the first case, Pr( · ) pro-
duces accurate values at the cost of a high degree (i.e. high compu-
tational burden). Although the optimal Pr( · ) in the second case
achieves the lowest degree, its value is not accurate. The third case
makes a compromise between the degree (efficiency) and the number
of the accurate values (accuracy).

Frankly, all three cases have pros and cons. Users can choose different
solutions according to different requirements. Here, we provide a unified
framework that is able to trade off the efficiency and accuracy for differ-
ent situations.

Our accelerating method: We employ the optimal polynomial

Pr(z) =
∑Mr

i=0
br
i z

i with degree Mr to approximate the arbitrary range

kernel Kr( · ) as Pr(z) is able to linearise the nonlinear convolution of
Kr( · ). Then, substituting the nonlinear convolution of Kr( · ) with
Pr(z), we have

Îx =

∑Mr
i=0

∑i
j=0 wij(Ix)

∑
y[N r

x

Ks(‖y− x‖)Fij
y

∑Mr
i=0

∑i
j=0 wij(Ix)

∑
y[N r

x

Ks(‖y− x‖) (4)

where wij(Ix) = br
i

i
j

( )
(−Ix)

i−j, cij(Iy) = I jy and Fij
y = cij(Iy)Iy. Once

again, the most time-consuming operation in (4) is the linear convolu-

tion of Ks( · ) because
∑Mr

i=0

∑i
j=0 is the pointwise sum operation.
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Fig. 1 Gaussian kernel approximations (first and second rows) and exponential
decay kernel exp (− |x| /σ) approximations (third row), where variance σ = 80

a Zhang [5]; b Gunturk [6]; c Pan [7]; d Dai [3]; e Chaudhury [4]; f Ours;
g Gunturk [6]; h Pan [7]; i Ours

In the literature, the Fast Fourier transform is exploited to fast compute
the linear convolution. We can also employ Pan and He’s multiple boxes
approximation strategy [7] to compute the filtering results. According to
Pan and He’s method, we decompose the spatial kernel Ks(‖y− x‖) into
Ms box functions Ks(‖y− x‖) ≈ ∑Ms

i=1 b
s
i BN ri

x
(‖y− x‖), where

BN r
x
(‖y− x‖) = 1 when y [ N r

x; otherwise BN r
x
(‖y− x‖) = 0. Then,

replacing the nonlinear convolution by
∑Ms

i=1 b
s
i BN ri

x
(‖y− x‖), we can

obtain the fast equivalent filtering form (5)

Îx =
∑Mr

i=0

∑i
j=0 wij(Ix)

∑Ms
k=1 b

s
kBN x

Fij∑Mr
i=0

∑i
j=0 wij(Ix)

∑Ms
k=1 b

s
kBN x

E

(5)

The integral histogram technique can compute the box filtering results

BN x

Fij and BN x

E of Fij and the matrix E of ones. Moreover, the sum oper-

ations
∑Mr

i=0

∑i
j=0 ,

∑Ms
k=1 are pointwise. Hence, the overall compu-

tational complexity of (5) is O(|I|).

Kernel approximation: BF accelerating methods decompose the BF
into a set of linear time filters by substituting the original kernel in the
BF with its approximation. Thereby, the accuracy of the approximation
determines the accuracy of the final results. In the literature, Zhang et al.
[5], Gunturk [6] and Pan [7] all resort to a set of box functions to
approximate the Gaussian kernel. The major difference is that the
three methods use different techniques to determine the radii ri of box
functions and the coefficients bs

i . However, due to the non-smooth prop-
erty, the box functions can only obtain rough approximations for the
Gaussian kernel as illustrated in Fig 1. In contrast, Dai et al. [3] and
Chaudhury et al. [4] take advantage of the Hermite polynomials and
raised cosines, respectively, to approximate the Gaussian kernel.
Nevertheless, the success of the series expansion methods depends on
the smoothness of the target kernel. For arbitrary non-smooth kernels,
there is no guarantee for the existence of series expansion. Even
worse, the approximation for the Gaussian kernel with small variance
is not satisfactory. The approximation errors of both series expansion
methods are significant using a low-order expansion, when the variance
of the Gaussian kernel is small. The approximation using the box func-
tion is also not very good for the small variance. Since there are no
special points on the curve of the smooth Gaussian kernel, we choose
the second case in the above Optimal fitting polynomial Section to
compute the optimal polynomial of the Gaussian kernel and illustrate
the optimal polynomial with degree 6 for the 511 discrete points {(ri,
Gσ(ri))}, ri∈ {−255, …, 255} in Fig. 2.

The exponential decay kernel exp(− |x|/σ) is not differentiable at zero.
The methods of Zhang et al. [5], Dai et al. [3] and Chaudhury et al. [4]
cannot deal with this situation. Although the box function can be used to
approximate the kernel in the frameworks proposed by Gunturk [6] and
Pan [7], the approximation curve is still very rough. In contrast, employ-
ing the third case in the Optimal fitting polynomial Section, our method
is able to produce an approximation polynomial exactly passing through
the non-differentiable point as illustrated in Fig. 2.
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Fig. 2 Approximation error illustration. Spatial kernel and range kernel of
prototype BF chosen as the Gaussian kernel and we assign σr = 80 for
Gaussian range kernel

a Zhang [5]; b Gunturk [6]; c Pan [7]; d Dai [3]; e Chaudhury [4]; f Ours
Accuracy evaluation: In this Section, we directly compute the linear
convolution of Ks and evaluate the PSNR index which reflects the
accuracy of different nonlinear convolution decomposition methods to
verify the approximation ability of our method. This is because the
BF accelerating methods adopt various techniques to decompose the
nonlinear convolution of the range kernel into a set of linear convolu-
tions and employ linear time algorithms to fast compute the linear con-
volutions. If we take the brute-force method to compute linear
convolution, the approximation error can only be caused by the non-
linear convolution decomposition method. To provide an intuitive illus-
tration, we visualise the approximation error of the Lena image in Fig 2.
Both the spatial kernel and the range kernel of the prototype BF are
chosen to be the Gaussian kernel Gσ( · ). The results are obtained by
naive implementation of the accelerating methods of Zhang et al. [5],
Gunturk [6], Pan and He [7], Dai et al. [3], Chaudhury et al. [4] and
ours without using the brute-force linear convolution. Let Ibf denote
the result of the naive implementation of the BF and Iac represent the
result of the accelerating methods; we compute the absolute error by
|Ibf− Iac| and illustrate the filtering results and the corresponding ab-
solute error in Fig. 2. It is easy to see that our method achieves the smal-
lest absolute error among the six comparative accelerating methods.

Conclusion: We propose a novel BF accelerating method. The major
advantages of our method are that it is able to approach both differential
and non-differential range kernels and our accelerating algorithm only
needs addition and multiplication operations to calculate filtering results.
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