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a b s t r a c t

We propose a newmethod to enhance the lateral resolution of depth maps with registered high-resolution
color images. Inspired by the theory of compressive sensing (CS), we formulate the upsampling task as a
sparse signal recovery problem that solves an underdetermined system. With a reference color image, the
low-resolution depth map is converted into suitable sampling data (measurements). The signal recovery
problem, defined in a constrained optimization framework, can be efficiently solved by variable splitting
and alternating minimization. Experimental results demonstrate the effectiveness of our CS-based
method: it competes favorably with other state-of-the-art methods with large upsampling factors and
noisy depth inputs.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a wide range of devices have been developed to
measure the 3D information in the real world, such as laser scanners,
structured-light systems, time-of-flight cameras and passive stereo
systems. The depth maps (range images) captured with most active
sensors usually suffer from relatively low resolution, limited precis-
ion and significant sensor noise. Therefore, effective depth map post-
processing techniques are essential for practical applications such as
scene reconstruction and 3D video production, especially for 3D face
recognition [1] and 3D object recognition [2,3].

In this paper, we present a method to enhance the spatial res-
olution of a depth map with a registered high-resolution color image.
Our method is based on two key assumptions: first, neighboring
pixels with similar colors are likely to have similar depth values; sec-
ond, just like most natural images, an ideal depth map without noise
corruption has large smooth regions and relatively few discontinu-
ities, and therefore can be approximated with a sparse representation
in some transform domain such as multiscale wavelets. Although the
first assumption has been extensively explored in recent depth post-
processing work [4–9], relative less attention has been given to the
second assumption [10,11].

Inspired by the theory of compressive sensing [12,13], we try to
recover the upsampled depth map in a sparse signal reconstruction
process. We first compute a set of measurement data from the low-
resolution depth map. The measurement data near depth disconti-
nuities are generated with a cellular automaton algorithm, and no

filtering techniques are involved in the process. Then we recon-
struct the depth signal in an optimization model, with constraints
on measurements, smoothness and representation sparseness. An
efficient numerical method is provided to solve the model with
linear complexity in the number of the image pixels. Experimental
results show that, by solving the problem in a CS-based framework,
our algorithm can produce high quality depth results with relatively
low resolution depth maps. And it shows stable performance under
noisy conditions.

The rest of the paper is organized as follows. Related work is
reviewed in Section 2. Section 3 provides a brief introduction to the
CS theory, whereas our CS-based upsampling model is presented
in Section 4. After that, in Section 5, we describe how to generate the
sampling data for the model, and we provide a numerical solution
in Section 6. Section 7 reports the experimental results and discusses
how to register a low resolution depth map and its companion high
resolution color image as well as the influence of sampling pattern.
At last, conclusions are given in Section 8.

2. Related work

As stated in Section 1, the idea of enhancing a depth map with
a coupled color image is not new. Existing methods can be roughly
classified as either filtering-based methods [5–8] or optimization-
based methods [4,9].

Filtering-based methods employ color information with various
edge-preserving filters [14,15]. Kopf et al. [5] use a joint bilateral
filter to refine the upsampled depth results. Yang et al. [6] instead
initialize a cost volume and iteratively smooth each cost slice with a
bilateral filter. Sub-pixel accuracy is achieved with an interpolation
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scheme. Huhle et al. [8] rely on nonlocal means filters (NLM) for
depth denoising and upsampling. One advantage of filtering-based
methods is that they can be easily parallelized on graphics hard-
ware [7,8]. However, to find enough support for each pixel, large
filtering kernels are often used, or the filters have to be performed
iteratively, which might lead to over-smoothed depth results.

The methods which are more closely related to our algorithm are
the optimization-based methods [4,9]. In [4], Diebel and Thrun
construct a two-layer Markov Random Field model for depth map
upsampling. The color information of neighboring pixels is encoded
as edge weights of the graph. Recently, Park et al. [9] improve this
model by including a multi-cue edge weighting scheme and an NLM
energy term, which turns out to be very effective for preserving fine
structures and depth discontinuities. To make the problem tractable,
both methods use quadratic cost functions, which can be solved
using standard numerical methods such as conjugate gradient. Our
method differs from these methods in which we formulate the
model with l1 sparseness and total variation constraints, which
shows the more robust behavior against noise and low sampl-
ing rates.

Recently, some researchers have explored sparse representations
for depth map processing [10,11]. Tošić et al. [10] use sparse coding
techniques [16] to learn a dictionary from Middlebury disparity data
sets. This dictionary is exploited in a MRF model, which brings
accuracy improvements for stereo depth estimation and range image
denoising. Hawe et al. [11] propose a CS-based depth estimation
method from sparse measurements. They show that, by taking only
5% of the disparity data as measurements, their method can recover
the full disparity map with high accuracy, which is quite impressive.
An essential point of their method is that the pixels lying at depth
boundaries should be selected as sampling points, otherwise the
reconstruction accuracy would be seriously affected. Unfortunately,
such information is unavailable in our low-resolution depth inputs.
We provide a novel method to generate measurements at these
sampling positions with a registered reference color image, which
proves crucial for the upsampling accuracy. Moreover, we employ a
different CS model with better regularization ability.

3. CS theory and underdetermined linear system

CS theory finds an optimal solution xn from the observed data
yARm by reducing the problem to solving an underdetermined
linear system. In mathematical terms, the observed data ym is
connected to the signal xn of interest via

Φx¼ y ð1Þ
where mon, x is the s-sparse vector which only has s nonzero
components and the measurement matrix ΦARm�n models the
linear measurement process. Traditional wisdom of linear algebra
suggests that the number m of measurements must be at least as
large as the signal length n. Indeed, if mon, the classical linear
algebra indicates that the underdetermined linear system Eq. (1) has
infinite solutions. In other words, without additional information, it
is impossible to recover x from y in the case mon. However, with
additional sparsity assumption, it is actually possible to reconstruct
the sparse vector x from underdetermined measurements y¼Φx
because many real-world signals are sparse. Even though they are
acquired with seemingly too few measurements, exploiting sparsity
enables us to solve the resulting underdetermined systems of linear
equations. More importantly, there are many efficient algorithms for
the reconstruction [17–19].

Specifically, CS theory reconstructs x as a solution of following
combinatorial optimization problem

min
x

‖x‖0

s:t: Φx¼ y ð2Þ
where ‖x‖0 denotes the number of nonzero entries of a vector.
However, the minimization problem is nonconvex and NP-hard. It
thus is intractable for a modern computer. An alternative method is
ℓ1 minimization, which can be interpreted as the convex relaxation
ℓ0 minimization.

min
x

‖x‖1
s:t: Φx¼ y ð3Þ
One major shortcoming of above considerations is that they do

not carry over to the complex setting such as the contaminated
measurements y. As a remedy, we can directly extend the ℓ1 mini-
mization (3) to a more general ℓ1 minimization taking measurement
error into account, namely,

min
x

‖x‖1

s:t: ‖Φx�y‖22rϵ ð4Þ
It is worth noting that the solution of Eq. (4) is strongly linked

to the output of the ℓ1 denoising, which consists in solving, for
some parameter βZ0

min
x
β‖x‖1þ1

2 ‖Φx�y‖22 ð5Þ

Expecting Eq. (3) can restore any x for any Φ is unreasonable.
Instead, CS theory only proves that for any integer n42 s, there
exists a measurement matrix ΦARm�n with m¼2 s rows such that
every s sparse vector xARn can be recovered from its measurement
vector yAΦx as a solution of Eq. (3). However, finding out the
measurement matrixΦ is a remarkably intriguing endeavor. To date,
it is still an open problem to construct explicit matrices which are
provably optimal in a compressive sensing setting. One novelty of the
work is just providing a method to construct the measurement
matrix Φ for depth upsampling.

The depth upsampling problem can be reduced to the problem
of using the underdetermined linear system Eq. (1) to find an
optimal solution xn from few measurements ym because depth
upsampling aims to restore a high-resolution depth map from a
low-resolution depth map and the values of the low-resolution
depth map can be viewed as the samplers of the high-resolution
depth map. Unfortunately, depth maps are not usually sparse in the
canonical (pixel) basis. But they are often sparse after a suitable
transformation, for instance, a wavelet transform or discrete cosine
transform. This means that we can write x¼Ψz, where zn is a
sparse vector and Ψ n�n is a unitary matrix representing the trans-
form. Recalling y¼Φx, depth upsampling finds a solution x¼Ψ Tz
from the underdetermined linear system Eq. (6).

ΦΨ Tz¼ y ð6Þ
Obviously, the underdetermined linear system (6) is similar to

the underdetermined linear system (1) and the similarity leads
us to guess that CS theory also deals with this kind of under-
determined linear system. Indeed, studying Eq. (6) is the origin
of CS theory. Without any doubt, CS theory can efficiently solve
it [12,13,20] by using the optimization problem (3).

4. CS-based upsampling model

We build our upsampling model upon a fundamental fact that
many signals can be represented or approximated with only a few
coefficients in a suitable basis. Consider a high-resolution depth
map dARn in column vector form, it can be linearly represented
with an orthonormal basis Ψ ARn�n and a set of coefficients xARn:
d¼Ψx; x¼Ψ Td. The map d is linearly measured m times (m5n),
which leads to a set of measurements yARm with a measurement
matrix ΦARm�n: y¼Φd. The CS theory tries to recover depth map
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d from measurements y with the sparsest vector x:

min
d

‖Ψ Td‖0

s:t: y¼Φd ð7Þ
This l0 minimization problem is known to be NP-hard even for app-
roximate solutions [21]. If ‖:‖0 is approximated with a convex term
‖:‖1, the resulting problem can be posed as a linear program [22]. For
practical applications, themeasurement constraints are usually relaxed
due to additive noise. These approximations lead to the following l1
regularization problem:

min
d

‖Ψ Td‖1

s:t: ‖y�Φd‖2oϵ ð8Þ
where ϵ is a bound for the underlying noise.

Sparsity as a prior could not guarantee that Eq. (8) could produce
regularized results as it can only help us identify a solution from the
infinite possible solutions of the underdetermined linear system (6).
Fig. 1(b) shows the upsampled result produced by Eq. (8). We can
observe that the depth surfaces suffer from fluctuation artifacts
which significantly lower the upsampling quality. To solve the
problem, we incorporate an additional total variation (TV) term for
smoothing the depth map while still preserving discontinuities. The
TV term is defined in l1 norm:

‖d‖TV ¼ ∑
n

i ¼ 1
ðj∇hðdðiÞÞjþj∇vðdðiÞÞjÞ ð9Þ

where ∇h;∇v denote the local horizontal and vertical gradients for
pixel dðiÞ respectively. In practice, we find that l1 norm TV (also
known as anisotropic TV [23]) produces sharper boundaries than l2
norm for our data sets. After adding this term to the objective
function in Eq. (8), we convert our final model into the following
unconstrained optimization problem:

min
d

α‖d‖TVþβ‖Ψ Td‖1þ1
2 ‖y�Φd‖22 ð10Þ

where parameters α;β control the weights of the two regularization
terms. The regularized result of Eq. (10) is demonstrated in Fig. 1(c).
Compared with the result of Eq. (8), the nasty artifacts are removed
entirely and therefore the depth surfaces in Fig. 1(c) are rather
satisfactory.

ForΨ andΦ, we follow the patterns defined in [11]:Ψ represents
a Daubechies Wavelet basis, while Φ samples the high-resolution
depth map with canonical pixel basis. The term Φ is important for
our depth upsampling application as Φ should satisfy the minimum
measurement requirement [24] deduced from CS theory. Strictly
speaking, CS theory could not be directly applied to our model
without mathematical proofs because we add an extra TV term to
the standard CS model and thus our CS-based upsampling model
(10) does not coincide with the standard CS model. However, we find

that our CS-based upsampling model shares the similar behavior
with the standard CS model because both of them solve the under-
determined linear system. Thus the factors that influence the final
results of the standard CS model should also influence the resulting
quality of our CS-based upsampling model. In the sequel, we will
conduct experiments to verify the assumption and employ the
conclusions of CS theory to discuss how to construct a satisfactory
Φ for accurate recovery.

5. Sampling data generation

This section describes how to construct the measurement matrix
Φ used for depth upsampling (i.e. how to generate the sampling
data from a low-resolution depth map Dl and a registered high-
resolution color image Ih) as the measurement matrixΦ is a specific
matrix that should satisfy the minimum measurement require-
ments. In the following paragraphs, the sampling position informa-
tion is denoted as a mask image Mh. If the pixel (i,j) is selected as a
sampling point, Mhði; jÞ ¼ 1; otherwise Mhði; jÞ ¼ 0. The sampling
values are stored in a high resolution depth map Dh. Note that Dh is
used for sampling purpose only, and it is not the final output of our
upsampling algorithm. The measurement matrix Φ and the mea-
surements y can be easily constructed from Mh and Dh. Without
losing any generality, the upsampling factor for both horizontal and
vertical directions is set as U. A pixel ði; jÞADl corresponds to a U�U
patch in the high resolution image space.

5.1. Minimal number of measurements

Both the compressive sensing problem Eq. (1) and our depth
upsampling problem Eq. (6) consist in reconstructing an s-sparse
vector from an underdetermined linear system. Although the sparsity
assumption hopefully helps in identifying the original vector, it is
unreasonable to expect that we can restore original vector from the
observed measurements with arbitrary number. Indeed, there is a
lower bound for the number of measurements. In other words, the
number of measurements must be greater than the minimal number
of measurements; otherwise, no one could identify the original
vector. More importantly, the lower measurement number implies
the larger upsampling rates for depth upsampling.

In literature, CS theory has proved that the mutual coherence
μðΦ;Ψ Þ between the sensing matrix Φ and the representation
basis Ψ determines the minimal number of measurements and
μðΦ;Ψ ÞA ½1; ffiffiffi

n
p �.

μðΨ ;ΦÞ ¼ ffiffiffi
n

p � max
1rk;jrn

j〈ψ k;ϕj〉j ð11Þ

Then, for a fixed signal f nARn whose coefficients are at most S
nonzero entries in the basis Ψ , the CS theory [20] guarantees that

Fig. 1. The upsampling results of Eqs. (8) and (10). (a) Is the ground truth, (b) demonstrates the 8X upsampling result of Eq. (8), (c) shows the 8X upsampling result of
Eq. (10). Compared (c) with (b), we can observe that there are nasty artifacts on the depth surfaces of (b).
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select m measurements in the Φ domain uniformly at random; if

mZC � μ2ðΨ ;ΦÞ � S � logn ð12Þ

for some positive constant C, the solution of compressive sensing is
exact with overwhelming probability. More specifically, it is shown
that the probability of success exceeds 1�δ if

mZC � μ2ðΨ ;ΦÞ � S � log n
δ

� �
ð13Þ

At last, we note that both the lower bound and the restoration
quality for our depth upsampling problem are determined by the
sensing partner of the sensing matrix Φ as the representation basis
Ψ are selected as the Daubechies Wavelet basis in advance.

To fight against the high mutual coherence between the mea-
surement matrixΦ and orthogonal representation bases Ψ [25], it is
natural and reasonable to randomly map the depth values of low
resolution depth map Dl into the high resolution depth map Dh.
Specifically speaking, in depth upsampling situation, a pixel ði; jÞADl

corresponds to a U�U patch in Dh. From this patch, we randomly
select one sample with uniform distribution, and set their Mh values
to 1 as follows:

DhðinUþs; jnUþtÞ ¼Dlði; jÞ s; t ¼ 1;…;U ð14Þ

5.2. Our sampling method

Although the random sampling scheme could reduce the mutual
coherence and therefore decreases the lower bound of measure-
ments, the sampling scheme could not keep depth edges in the high
resolution depth map as sharp as depth edges in the low resolution
depth map. Instead, we manually select pixels around depth dis-
continuities as sampling data points and add random sampling
positions in the homogeneous region to decrease the mutual
coherence μðΨ ;ΦÞ. As discussed previously, this procedure is essen-
tial for the accuracy of the model. Since depth borders are not known
before upsampling, we will infer their positions and the correspond-
ing measurements with the auxiliary information of the registered
color photo.

We first detect homogeneous regions and border regions in the
original depth map Dl with a simple thresholding scheme. A pixel
p¼ ði; jÞADl is classified as ‘homogenous’ if its depth value DlðpÞ
satisfies the following condition, otherwise it falls into the ‘border’
region:

jDlðpÞ�DlðqÞjoλ; 8qANðpÞ ð15Þ

where NðpÞ is the 4-connected neighborhood of pixel p, and λ is a
depth threshold value. We then map this region information to the
high resolution image space.Mh;Dh in homogeneous and border regi-
ons are computed successively. Our sampling method is quite different
fromHawe et al.'s work [11]. Their method relies on intensity edges for
border detection, since no depth information is available. We instead
use Dl for rough region detection, and then incorporate edge informa-
tion to compute Mh and Dh only in border regions, which helps to
distinguish intensity edges and actual depth borders.

The procedure described above works well for small or mod-
erate upsampling factors. However, when U reaches 16 or even
larger, the generated sampling points would be too sparse in the
high resolution image space to meet the minimum measurement
requirements [24]. We provide a simple hierarchical solution for
large upsampling factors. Large U is decomposed into a set of small
factors: U ¼ U1 � U2…Um. Then, starting from the low resolution
depth map, the sampling data generation process is performed m
times with small factors to get the final high resolution Mh and Dh.
In practice, U¼16 are decomposed as 4�4 respectively, such that
the number of the times m is kept as low as possible.

5.2.1. Sampling homogeneous regions
For a homogenous pixel ði; jÞADl, its depth value is directly

mapped to a U�U homogenous patch in Dh as follows:

DhðinUþs; jnUþtÞ ¼Dlði; jÞ s; t ¼ 1;…;U ð16Þ

From this patch, we randomly select one or several samples
with uniform distribution, and set their Mh values to 1. As stated
in [25], this random selection helps to lower the mutual coherence
between Ψ and Φ.

Fig. 2 shows the sampling data generation process for homo-
geneous regions. We can observe that each pixel in the low resol-
ution depth map (left image) corresponds to a 2�2 patch in the high
resolution depth map (right image), where the pixels with the same
color on either side denote the pixel-patch mapping. In the data
generation process, we randomly chose a red pixel in each patch and
assign the corresponding depth in the low resolution depth map to it.

5.2.2. Sampling border regions
For border pixels in Dl, their depth values are not reliable due to

the downsampling process, and directly mapping these pixels to Dh

would introduce significant sampling errors. We instead try to fill
these regions in Dh with homogenous depth values computed in the
previous step. The color image Ih should be considered in the filling
process. This problem can be posed as an inpainting problem with a
reference color image, and it shares some similarities with the occ-
lusion handling problem in traditional stereo depth estimation [26].

Here, we provide a border region filling method based on the
classic Cellular Automata (CA) [27]. CA usually works on a regular
grid of cells, with finite states and local transition rules, which are
suitable for many image processing applications [28]. In mathema-
tical terms, a cellular automaton is a triplet A¼ ðS;N; δÞ, where S is a
non-empty state set. N is the neighborhood system, and δ : SN Our
solution is based on the CA model proposed by Vezhnevets and
Konouchine [29]. Their model can propagate two labels to the full
image. We employ this model for depth propagation and extend the
local transition rules to respect the color distribution and the edges
in Ih, such that the propagation does not generate incorrect depth
boundaries. Specifically, for each pixel p, our method stores a four
state variable Sp ¼ ðDp;Θp; C

!
p; EpÞ, where Dp denotes the depth of

pixel p, Θp is the ‘transition strength’ of pixel p, C
!

p stands for the
feature vector of pixel p (i.e.the three dimensional vector of pixel p's
color of Ih ) and Ep records Ih color edges detected by Canny filter.
Without loss of generality, we assume Θp is bounded to [0, 1].

Initially, we assign Θp ¼ 1 for all the pixels with valid depth
values, otherwise Θp ¼ 0. Moreover, if p lies on a color edge, Ep ¼ 1,
otherwise Ep ¼ 0. After initialization, we collect all the pixels in the
border regions as a set P. The CA-based region filling algorithm
updates Spð8pAPÞ in an iterative manner according to the rules
listed in Algorithm 1 which renews Sp from time t to tþ1, where f is

Fig. 2. An illustration of the sampling data generation process for homogeneous
regions. Each pixel in the low resolution depth map (left image) corresponds to a
2�2 patch in the high resolution depth map (right image), where the pixels with
the same color on either side denote the one-to-one mapping. The red color pixels
in each patch are randomly chosen and we assign the corresponding depths in the
low resolution depth map to them. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)
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a monotone decreasing function bounded to [0,1]:

f ð C!p1
; C
!

p2
Þ ¼ 1�‖ C

!
p1
� C
!

p2
‖2ffiffiffi

3
p ð17Þ

Algorithm 1. CA-based border region filling algorithm.

Input:
State variables St

Output:

State variables Stþ1

1: for 8pAP do
2: Dtþ1

p ¼Dt
p

3: Θtþ1
p ¼Θt

p

4: for 8qANðpÞ do
5: if Ep ¼ ¼ 0 and Eq ¼ ¼ 1 then
6: continue
7: end if
8: if f ð C!p; C

!
qÞ �Θt

q4Θt
p then

9: Dtþ1
q ¼Dt

p

10: Θtþ1
q ¼ f ð C!p; C

!
qÞ �Θt

q

11: end if
12: end for
13: end for
14: return Stþ1

In each iteration, the transition strength Θp is updated with the
neighboring color information. The pixels lying on intensity edges
are only allowed to propagate depth information along the edge
(Lines 5–7 in Algorithm 1). When no more pixel changes its state in
the iteration, the algorithm stops, and the output state variables are
used to update Dh andMh. The pixels in P lying at color edges (i.e.the
pixel pAE¼ fpjEp ¼ 1g) are all selected as sampling points. Then
the subset P�fpjEp ¼ 0g of the remaining pixels are randomly
selected with a uniform distribution.

Using biological metaphor, the pseudocode listed above has an
intuitive explanation. Since the depth values are discrete and have L
different quantization levels, we can treat the depth assigning pro-
cess which diffuses the depths from interpolating seeds to inter-
polated pixels as growth and struggle for domination of L types of
bacteria. The culture media is limited to the border regions P. The
bacteria start to spread from the seed pixels and try to occupy all the
border regions P. We define the battlefront of different bacteria types
as the pixel set E and constrain that the warriors in the battlefront
should not escape from the battlefield and invade the region of other
bacteria types (i.e.the if statement Ep ¼ ¼ 0 and Eq ¼ ¼ 1 in the
pseudocode does). At each step, each bacteria p tries to attack its
neighbors NðpÞ. The attack force is defined by the attacker's transi-
tion strength Θp and the distance between the feature vectors
C
!

p1
; C
!

p2
of attacker and defender. If the attack force is greater than

defender's strength, the defending pixel is conquered and its depth
and strength are changed. The result of these local competitions is
that the strongest bacteria occupy the neighboring sites and gradu-
ally spread over the border regions P.

An illustrative example of our border regions sampling method
is given in Fig. 3. As we stated above, a pixel in the low resolution
depth map corresponds to a patch in the high resolution depth map
according to the pixel-patch mapping used in Fig. 2. Hence, only
using the depth edge information of the low resolution depth map,
we could not accurately determine depth edges in the high
resolution depth map. Instead, we detect depth edges in the low
resolution depth map and map them into the high resolution depth
map. In this way, we are able to locate the border regions which

indicate the possible location of depth edges in the high resolution
depth map. Note that the depths in the depth edges of the low
resolution depth map are neglect because they are not as reliable as
the nearest depths in the homogeneous region to determine the
depths in the border region. Therefore, we employ the nearest
depths in the homogeneous region and our CA-based border region
filling algorithm to fill the depths in the border regions. Fig. 3 just
shows this sampling data generation process for border regions.

6. Numerical solution

In this section, we provide a first-order numerical solution for the
optimization problem defined in Eq. (10). A major difficulty in mini-
mizing Eq. (10) is that both the TV term and the sparseness term are
non-differential l1 regularizes. We decompose the original problem
into three subproblems with variable-splitting and quadratic penalty
techniques. For each subproblem, efficient solution is available. There-
fore, the original problem can be solved in an alternatingminimization
framework [30].

We introduce two auxiliary vectors u; vARn, such that d can be
decoupled from the two terms:

min
d;u;v

αju‖TV þβ‖v‖1þ
1
2
‖y�Φd‖22

s:t: u¼ d; v¼Ψ Td ð18Þ
Problem (18) is hard to solve. We use following unconstrained
optimization Problem (19), which includes two quadratic penalty
terms to Problem (18), to approximate the original problem.

min
d;u;v

α‖u‖TV þ
αγ
2
‖u�d‖2þβ‖v‖1þ

βδ
2
‖v�Ψ Td‖2þ1

2
‖y�Φd‖22

ð19Þ
where parameter γ and δ control the approximation penalty for u
and v respectively.

Problem (19) can be solved in an alternating minimization
framework as follows:

1. For fixed v, d, solve the subproblem for u:

min
u

‖u‖TV þ
γ
2
‖u�d‖2 ð20Þ

This is a typical anisotropic TV problem, which can be effi-
ciently solved with a Split Bregman algorithm from [23].

2. For fixed u, d, solve the subproblem for v:

min
v

‖v‖1þ
δ
2
‖v�Ψ Td‖22 ð21Þ

Fig. 3. An illustration of the sampling data generation process for border regions. In
the sampling data generation process, we map the border region in the low
resolution depth map to the high resolution depth map according to the pixel-
patch mapping used in Fig. 2. At the meanwhile, the nearest depths for depth edges
in the low resolution depth are also mapped into the high resolution depth map
and form the nearest depths for depth edges in the high resolution depth. By
choosing these depths as seeds, our CA-based border region filling algorithm is able
to interpolate the depths in the border region satisfactorily.
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The problem is well studied in CS literature. Using the simple
one-dimensional shrinkage operator, we can directly write
down its analytic solution.

v¼max Ψ Td�1
δ
;0

� �
sgnðΨ TdÞ ð22Þ

3. Finally, for fixed u,v, solve the subproblem for d:

min
d

αγ
2
‖u�d‖2þβδ

2
‖v�Ψ Td‖2þ1

2
‖y�Φd‖22 ð23Þ

This least square problem promises a closed-form solution:

d¼ KðαγuþβΨvþyÞ ð24Þ
where K ¼ ðαγIþβδIþΦTΦÞ�1 is a diagonal matrix.

Steps 1–3 are iteratively performed until the algorithm converges.
For our upsampling problem on 1390�1110 images, stable results
can be efficiently achieved within 200 iterations.

7. Experiments

In this section, we first describe a preprocessing step to register the
depth camera and conventional camera as the procedure is an essential
step for following experiments. Second, the experiments’ parameter
configuration and the evaluation index are presented. After that, we
compare the upsampling results of different sensing patterns and
discuss the functions of different terms in Eq. (10). Last but not least,
we conduct extensive experiments, including the synthesized data and
the real world date, to illustrate the upsampling ability of our method.

7.1. Depth map registration

Depth maps and theirs companion color images are captured
by different cameras, thus they do not registered well in reality. Let
Xd ¼ ðX;Y ; Z;1Þ denote the 3D homogeneous coordinates of the
pixels of a depth map, and Xc ¼ ðr; c;1Þ represent the 2D homo-
geneous coordinates of the companion high-resolution RGB image
of the depth map. We have the following projection relationship
about Xd and Xc:

Xc ¼ sK½R j t�Xd ð25Þ
where s is a scale factor, K is the intrinsic parameters of the optical
camera, R and t are the rotation and translation matrix which
describe the rotation and translation of the optical camera and the
depth camera.

We can use the well-known calibration method introduced by
Zhang [31] to calibrate the parameters of the two cameras. However,
the depth camera could not capture textures as the RGB camera does.
Instead of using the traditional visible textures, we can use a planar
calibration pattern which consists of holes for the reason that these
holes can be captured by both cameras. A similar method has been
used by Park et al. [9] to register depth maps and color images too.
For the two calibrated cameras, we can project any points Xd which
are on the low-resolution depth map onto the high-resolution RGB
image by using Eq. (25). In this situation, the scaling term s is the
relative resolution between the depth camera and the optical camera,
in other words, it is the upsampling rate. For any point xt which is on
the low-resolution depth map with depth value dt, we can transform
the local coordinate of the depth camera ½xt ; dt ;1�T into the world
coordinate Xd by the following equation:

Xd ¼ P�1
t ½xt dt 1�T ð26Þ

where P�1
t is the inverse of the 4�4 projective transformation Pt

which converts the world coordinate Xd into the local coordinate
½xt dt 1�T of the depth camera.

7.2. Parameter configuration and evaluation index

In the sequent experiments, we quantitatively test our algorithm
on the Middlebury stereo datasets [32], which provide both high
resolution color images and ground truth depth maps, as well as the
well-known KITTI Vision Benchmark Suite. Specifically, for the
synthesized experiments illustrated in Section 7.4, we use ‘Books’,
‘Dolls’, ‘Moebius’ and ‘Plastic’ images of the Middlebury datasets
whereas we randomly choose three depth images from the KITTI
Vision Benchmark Suite to perform real data upsampling. The test
platform is a PC with Intel i5 2.8GHz CPU and 4GB memory. The
upsampling performance of our method is rather stable when
λ;α;β; γ; δ are in the ranges ½2;5�; ½0:5;2�; ½0:5;1:5�; ½25;35�; ½25;35�,
respectively. For convenience, we consistently keep the parameter
setting λ;α;β; γ; δ of all the data sets used in the experiments
unchanged, where λ¼ 4:0;α¼ 1:0;β¼ 1:0; γ ¼ 32:0;δ¼ 32:0. The
upsampling factor U, in our experiments, varies from 2X to 16X,
which covers the resolution range for most depth sensors. For a
given factor U, the ground truth depth map is downsampled by U to
create the input depth data.

For performance evaluation, we need to explain the meaning of
getting a satisfactory result with a high probability because CS theory
only guarantees that we have a high probability (refer to Eqs. (12)
and (13) to obtain an exact result. Performing hundred expe-
riments for an image and accounting the number of satisfactory
results is not a rational method to evaluate the performance of our
method. Instead of using this direct method, we evaluate the PSNR
index of an upsampling result, which quantifies the quality of a
result. We measure the quality of the upsampled results with peak
signal-to-noise ratio, often abbreviated PSNR, which is used to
measure the ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of its
representation [33]. If our method gets a satisfactory result with a
high probability, the upsampling result tends to has a large PSNR
index, otherwise, it should have a small PSNR index at most of
the time.

7.3. Sampling pattern

A common doubt about our upsampling method is whether the CS
theory can be applied to our depth upsampling model as an additional
TV term is added to the tradition CS restoration model (Eq. (7). Frankly
speaking, we do not offer a mathematical analysis for the model as the
traditional CS theory does and we think that a detailed mathematical
analysis is out of the scope of this paper as we only target at providing
a novel and practical depth upsampling method. However, the
experimental results in the sequel support the idea of that our depth
upsampling model behaves as the traditional CS restoration model
(Eq. (7) does.

A major difference between CS model and the traditional inter-
polation methods is whether the quality of final results is heavily
affected by the sampling pattern of observed data. To the best of our
knowledge, the sampling pattern of observed data plays a minor role
in the interpolation quality for the traditional interpolation methods.
In other words, the final results only depend on the number of
interpolating pixels. On the contrary, the observed data's sampling
pattern completely determines the final results of CS model. i.e. for
some sampling patterns, the CS model could satisfactorily restore the
final result from the observed data. For the other sampling patterns,
the CS model fails to complete this task, even the number of observed
depths is the same in both situations. The reason is that, as we stated
in Section 5.1, the minimal numberm of measurements is determined
by the mutual coherence μ2ðΨ ;ΦÞ, i.e.

mZC � μ2ðΨ ;ΦÞ � S � logn ð27Þ
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For uniform grid distribution, μðΨ ;ΦÞ ¼ 6. Whereas, in the ran-
dom sampling distribution situation, μðΨ ;ΦÞ ¼ 2:5 which is smaller
than the mutual coherence value of the uniform grid distribution.

Fig. 4(c) and (d) illustrates the phenomenon for 8X upsampling,
where we take two different sampling patterns (or distribution) with
the same sampling number. One distribution is the uniform grid,
which is usually employed by the traditional interpolation methods.
The other one is the random distribution generated by Eq. (14). We
can observe that our CS based model is unable to interpolate the
missing depths in the edges boundary for the uniform sampling
pattern and successes to recovery the depths for random distribution.
The behavior coincides with the prediction of the CS theory. Random
distribution is still an inappropriate sampling pattern as it could not
keep the sharp depth edges. The shortcoming can be observed
in Fig. 4(c). As a remedy, in Section 5.2, we proposed a novel hybrid
sampling pattern which randomly takes sample in homogeneous
regions and deterministically the depths in border regions. The
results is demonstrated in Fig. 4(d). Compared with previous two
sampling patterns which are the deterministic sampling pattern (i.e.
uniform grid) and random distribution (i.e.random sampling) respec-
tively, the restoration result Fig. 4(e) of our hybrid sampling pattern is
the best among the three sampling patterns.

7.4. Evaluations using the Middlebury stereo datasets

Our algorithm (denoted as CS1) was implemented with Matlab.
For comparison, four methods are selected: the bilateral-filtering

based method (denoted as Bilateral) [6], two MRF-based methods
(denoted as MRF1, MRF2) [4,9] and the original CS-based method
(denoted as CS2) [11]. For the first two methods, we implemented
them with Matlab, and the parameters were finely tuned. For CS2
and MRF2, we directly use the source code provided by the authors.
One thing needed to be clarified is that CS2 was not designed for
the upsampling problem. We provide the results to show that our
sampling strategy is more suitable for the specific problem.

We first test the algorithm with ‘ideal’ low resolution depth
maps without noise corruption. The PSNR results for the five
methods under various upsampling factors are presented in Fig. 5.
Our algorithm works better under large upsampling factors. It
consistently outperforms other methods with 2X, 4X, 8X and 16X
upsampling. MRF2 also gives overall satisfactory results in most
cases, while Bilateral and MRF 1 performs well under low
upsampling rates. Compared with the sampling method used in
CS2, our sampling data generation method plays an important role
in high quality CS-based upsampling.

For the qualitative comparison of PSNR, we present some 8X
upsampled results computed by CS1, Bilateral and MRF2 methods
in Fig. 6. It can be seen that our method preserves sharp and
accurate depth boundaries during the upsampling process, which
demonstrates the effects of the l1 regularization terms. We also
own this achievement to our sampling method because our
method could generate accurate samples on boundaries with CA-
based region filling method and the produced boundaries coincide
with the color edges of the high-resolution reference RGB photo.

Fig. 4. Sampling Pattern for 8X upsampling. (a) and (b) exhibit the guidance image and ground truth respectively, (c) demonstrates the uniform sampling, (d) illustrates the
random sampling, and (e) shows our sampling pattern. The sampling number is the same for the three distributions. We can observe that the restoration quality is very
different.
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The experimental results could prove our conclusions in the above
sections.

We then test the algorithm with noisy measurements. The noise
characteristics in practical range sensors usually depend on the dist-
ance between the sensor and the scene. To simulate this effect, we
employ a conditional Gaussian model from [9] for noise generation.

The amplitude of the noise varies for each pixel, which is set to be
720% of the measured depth. The PSNR results for the five methods
are presented in Fig. 7. Our method is robust against noise with little
accuracy loss, and it still outperforms other methods in most cases.
The performance of MRF2 and Bilateral drop dramatically due to the
noise. This can also be verified in Fig. 8, which provides some 8X
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Fig. 5. Upsampling PSNR results with ideal depth measurements. Our method (CS1) consistently outperforms other methods with 4� , 8� and 16� upsampling. (a) Books
PSNR comparison, (b) Dolls PSNR comparison, (c) Moebius PSNR comparison and (d) Plastic PSNR comparison.

Fig. 6. 8� upsampled depth maps for ‘Books’ ‘Dolls’ ‘Moebius’ and ‘Plastic’ data sets. The depth results are computed with CS1, Bilateral and MRF2 respectively.
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upsampled results computed by CS1, MRF2 and Bilateral methods
respectively.

Our method has a great set of advantages. On the border regions,
our cellular automata sampling method can produce sharp and
accurate edges. Therefore, we could obtain edge-preserving results.
On the homogeneous regions, our sampling method could reduce

the mutual coherence between the measurement matrix Φ and the
unitary matrix Ψ by random sampling. So our CS-based upsampling
algorithm outperforms other methods. Although it is abnormal that
the performance of our method is nearly same for lower upsampling
factors such as 2X, 4X, 8X, the behavior is reasonable according to CS
theory and the behavior does not imply fewer samples can keep

2X 4X 8X 16X
25

30

35

40

45

Upsampling Factor

P
S

N
R

Books

Books PSNR comparison

2X 4X 8X 16X
20
22
24
26
28
30
32
34
36
38

Upsampling Factor

P
S

N
R

Dolls

Dolls PSNR comparison

2X 4X 8X 16X

26
28
30
32
34
36
38
40
42

Upsampling Factor

P
S

N
R

Moebius

Moebius PSNR comparison

2X 4X 8X 16X
20

25

30

35

40

Upsampling Factor

P
S

N
R

Plastic

Plastic PSNR comparison

Fig. 7. Upsampling PSNR results with noisy measurements. Our method (CS1) still outperforms other methods in most cases. It shows robust behavior in noisy conditions.

Fig. 8. 8� upsampled depth maps with noisy measurements for ‘Books’ ‘Dolls’ ‘Moebius’ and ‘Plastic’ data sets. The depth results are computed with CS1, Bilateral and MRF2
respectively.
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reconstruction accuracy because the accuracy of our method decr-
ease drastically at 16X upsampling factor and this tendency will be
kept for larger U. For all the data sets, our algorithm produces the
final results in 100 seconds, which is almost the same to the running
time of CS2, but a bit slower than the MRF-based methods.

7.5. The performance characteristic of our method

Unlike traditional upsampling methods whose performances con-
sistently decrease while U increasing, the accuracy of our method is
not sensitive to the small upsampling rate U. Indeed, it tends to keep
the accuracy unchanged at the lowest upsampling rate. The inflection
point usually is U¼16 for the Middlebury stereo datasets. It is an
interesting feature which is unique to our method. In fact, for most
data sets, the best results are achieved at low upsampling rates. For
‘Books’ and ‘Dolls’, the PSNR results for 2X and 8X are still quite close.
In this section, we give an explanation for this feature. Since we
divide the domain of depth map into homogeneous region and
border region and take different sampling patterns, we discriminate
the upsampling behavior at different areas and provide correspond-
ing explanation.

For border region upsampling, we use cellular automata to detect
the color edges of the guidance image and map them onto the high
resolution depth map. Undoubtedly, the accuracy of detection will
decrease while the upsampling rate becomes large. However, the error
is not proportional to upsampling rate. From Table 1, we can observe
that the PSNR indices of border regions are kept unchanged for small
upsampling rates. Only for 16X upsampling, the PSNR indices have a
sharp reduction. The reason is that for low upsampling rate, the
cellular automata could detect the depth edges accurately under the
guidance of the registered color photo. For 16X upsampling rate, the
distances between seeds are very large and there are many color edges
between them. Thus our cellular automata algorithm fails to decide
which one is the correct depth edge.

For homogeneous region upsampling, we randomly map the low
resolution depth map into the high resolution depth map and then
employ our CS based upsampling method to interpolate the missing
depths. Specifically, we can only offer an heuristic explanation for
the upsampling behavior of homogeneous regions because our
model is out of the scope of traditional CS theory and we do not
offer an in-deep mathematical analysis for our CS-based upsam-
pling model as traditional CS theory does for the standard CS model.
However, in the experiments, we find that the mutual coherence
μðΨ ;ΦÞ proposed for disclosing the reconstruction condition of
traditional CS theory is also a good evaluation index for our CS-
based upsampling model. Specifically, CS theory [20] guarantees
that fix a signal f nARn whose coefficients are at most S nonzero
entries in the basis Ψ ; select m measurements in the Φ domain
uniformly at random; if

mZC � μ2ðΨ ;ΦÞ � S � log n
δ

� �
ð28Þ

for some positive constant C, the probability of successfully obtain an
exact solution to (18) exceeds 1�δ. Note that CS theory does not
ensure that we always get a satisfactory result; it only guarantees
that the probability of getting a satisfactory result is 1�δ with
respect to m measurements. According to our sampling method, the
mutual coherence μðΨ ;ΦÞ tends to decrease with the increasing
upsampling factor U because large U value brings more randomness
to the selection of the sampling positions, which helps to lower the
mutual coherence between the measurement matrix and the repre-
sentation matrix. Moreover, the smaller the coherence is, the fewer
samples are needed. However, compared with the mutual coherence
μðΨ ;ΦÞ, the number m of sampling pixels (or measurements)
decreases drastically along with the increasing upsampling rate U.
Therefore, when U¼16, the number m of measurements tends to
lower than the expected sampling number which guarantees that we
can obtain a satisfactory result with a high probability 1�δ. Altho-
ugh we can obtain the most samples when U¼2, μðΨ ;ΦÞ also
becomes larger in this case. In contrast, samples become fewer, but,

Table 1
The quality evaluation indices at different regions with four upsampling rates. The table illustrates the PSNR indices of the upsampling results of Books, Dolls, Moebius and
Plastic. We can observe that the PSNR indices of homogenous regions and border region are rather stable for 2X, 4X and 8X upsampling rates.

Books Dolls Moebius Plastic

Homo region Border region Homo region Border region Homo region Border region Homo region Border region

2X 53.8519 33.1011 54.3603 31.3568 56.7017 38.2858 55.8319 35.6013
4X 51.1759 31.9870 53.3611 29.5401 55.7788 37.2668 54.3312 34.9886
8X 49.8089 30.3277 50.6128 28.0730 53.6832 34.8609 53.6831 33.6051
16X 45.5557 21.4138 41.4395 24.6849 47.0020 32.7195 50.6382 21.4138

Table 2
The quality evaluation for different parts of our algorithm. The table illustrates the PSNR indices of the upsampling results of Books, Dolls, Moebius and Plastic. We can
observe that the PSNR indices of homogenous regions and border region are rather stable for 2X, 4X and 8X upsampling rates. In the missing TV rows, we remove the TV
term from our objective function and evaluate the quality of upsampling results. In the missing CA rows, we replace our CA-based border region filling algorithm by the
uniform sampling and calculate the PSNR indices of upsampling results.

Homo region Border region Homo region Border region Homo region Border region Homo region Border region

Missing TV
2X 53.0372 33.1011 53.7279 31.0730 55.7442 38.0812 55.4101 34.9456
4X 50.2701 31.7098 52.2636 29.1045 54.8139 37.0478 53.4155 34.2395
8X 49.6819 30.2011 50.3343 27.7391 53.1256 34.4606 52.8909 33.1167
16X 44.6423 21.1348 40.8926 24.3241 46.3314 32.1776 49.6787 20.9351

Missing CA
2X 53.8519 26.5463 54.3603 25.9694 56.7017 33.3882 55.8319 29.0503
4X 51.1759 24.9265 53.3611 23.7245 55.7788 32.8109 54.3312 26.3912
8X 49.8089 22.0931 50.6128 20.4178 53.6832 28.3978 53.6831 23.2012
16X 45.5557 14.4655 41.4395 13.7329 47.0020 25.6259 50.6382 17.9143
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the minimal number of measurements also small. As a result, the
probability 1�δ of getting a satisfactory result is not changed very
much for a wide range of upsampling.

It is also interesting to discuss the affect of the TV regularization
and our CA-based border region filling algorithm for depth upsam-
pling because they are two novel terms which are introduced to the
classical compressive sensing model by us. In order to disclose the
affect of them, we remove the TV regularization from our sampling
model and evaluate the quality of upsampling results at first. After
that, we substitute our CA-based border region filling algorithm with
the uniform sampling illustrated in Fig. 4(c) to reveal the function of
our CA-based border region filling algorithm. The quantitative results
are reported in Table 2. Compared to Table 1, we can easily find that
the TV regularization term mainly affects the upsampling quality of
homogeneous regions. This is because the PSNR indices are signifi-
cantly decreased in contrast to the PSNR indices in the border region.
Different from the TV regularization term, our CA-based border region
filling algorithm only affects the quality of upsampling results in the
border region. The reason is that the PSNR indices of homogeneous
regions in the missing CA rows are same to the data in Table 1. If we
compare the PSNR indices of the border region in the missing TV rows
to PSNR indices in the missing CA rows, we can also observe that the
CA-based border region filling algorithm heavily affects the final
upsampling results. However, it is not reasonable to say that the CA-
based border region filling algorithm is more important than the TV
regularization because the TV regularization is only designed to
smooth the depth values in the homogeneous region and the CA-
based border region filling algorithm is only used to keep the sharp
edges in the border region. In our algorithm, the two different terms
are jointly exploited to improve the upsampling quality in the
homogeneous region and border region simultaneously.

7.6. Real world experiments

Lacking of 3D laser scanner, we use the standard database from
KITTI Vision Benchmark Suite [34]. All of the data is acquired by a
standard station wagon with two color and grayscale video cameras.
The accurate ground truth is provided by a Velodyne laser scanner. We
take advantage of the laser scanner and companied color image to
perform our experiments.

The KITTI database aims to offer people a challenging real-world
computer vision benchmarks for autonomous driving. However, the
database is not in preparation for stereo evaluation as Scharstein [35]
did. It is a big challenge to use this KITTI Vision database for
upsampling experiments, because all of the data is captured from
Karlsruhe streets and the obtained scenes are usually very large, thus
the object structures are relatively small in the pictures. Compared
with the artificial in-door pictures used in state-of-the-art methods
[4,6,9,11], it suffers from varied sensing noise. This situation demands
strong denosing ability of upsampling algorithm.

The depth data acquired by the 3D laser scanner usually irregularly
distribute on the high resolution guidance color image domain, thus we
need to regulate the laser points and produce a low resolution depth
map as the input of our upsampling algorithm. In Section 5, we assume
that a pixel pADl corresponds to a U � U patch in the high resolution
image space. Then, if there are laser points in the U � U patch, we can
randomly select a point and assign its value to pADl because these
points concentrate in a small region and should have similar depth
values. Indeed, only using the depth assignment strategy, we could not
guarantee that each pADl has a defined depth value because the depth
data acquired by the laser scanner usually has holes. In order to fulfill
the holes in the low resolution depthmapDl, we down sample the high
resolution color image to obtain a small guidance image whose size is
the same as Dl and use our cellular automata algorithm to fulfill the
missing values by viewing the holes as edges.

The upsampling technique which can significantly reduce the
demand measurement number of captured depth data is illu-
strated in Fig. 9. In the experiment, we only perform 6X super-
resolution because the size of groundtruth is 1390�1110. For 8X
upsampling, the size of downsampled image is only 100�28.
Obviously, the dimension is too small and the downsampled image
loses too much information. Moreover, we catch that our algo-
rithm can keep the sharp boundary of depth map and the method
could reliably restore the geometric relationship.

8. Conclusion

We had presented a new method for depth map upsampling.
Based on the theory of compressive sensing, our method converts

Fig. 9. 6X upsampled results of our method for real world data. The depth-color pairs are shown at their original ratio of size. (a) Input data: guided color image and low-
resolution depth map and (b) upsampled result using the input data.
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the low resolution depth maps into a set of measurements, and
then formulates the upsampling task as a constrained optimiza-
tion problem with data, smoothness and represent sparseness
constraints. We validated our method with the Middlebury data
sets, demonstrating that our method clearly outperforms previous
methods under large upsampling factors and noisy inputs.
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