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Abstract—In this paper, we address the multi-view nonlinear
subspace representation problem. Traditional multi-view sub-
space learning methods assume that the heterogeneous features of
the data usually lie within the union of multiple linear subspaces.
However, instead of linear subspaces, data feature actually resides
in multiple nonlinear subspaces in many real-world applications,
resulting in unsatisfactory clustering performance. To overcome
this, we propose a Hyper-Laplacian Regularized Multilinear
Multi-View Self-representation model, which is referred to as
HLR-M2VS, to jointly learn multiple views correlation and local
geometrical structure in a unified tensor space and view-specific
self-representation feature spaces, respectively. In unified tensor
space, a well-founded tensor low-rank regularization is adopted to
impose on the self-representation coefficient tensor to ensure the
global consensus among different views. In view-specific feature
space, hypergraph induced hyper-Laplacian regularization is
utilized to preserve the local geometrical structure embedded
in a high-dimensional ambient space. An efficient algorithm is
then derived to solve the optimization problem of the established
model with theoretical convergence guarantee. Furthermore, the
proposed model can be extended to semi-supervised classification
without introducing any additional parameter. Extensive experi-
ment of our method is conducted on many challenging datasets,
where a clear advance over state-of-the-art multi-view cluster-
ing and multi-view semi-supervised classification approaches is
achieved.

Index Terms—t-SVD, multilinear, multi-view features, mani-
fold regularization, nonlinear subspace clustering.

I. INTRODUCTION

M ulti-view clustering is becoming one of researching
hotspots in unsupervised learning currently. In partic-

ular, given multiple heterogeneous features of data sampled
from a union of subspaces, multi-view subspace clustering
aims to partition data into several clusters, so that each cluster
corresponds to one subspace. The success of some recently
proposed multi-view subspace clustering methods [21], [22],
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[54] attributes to the use of self-representation, e.g., Sparse
Subspace Clustering (SSC) [19] or low-rank representation (L-
RR) [20]. The most representative approaches among them are
[21], [22], which can achieve the state-of-the-art performance.

Inherited from the LRR and SSC, most multi-view sub-
space clustering methods, including [21], [22], are originally
proposed to deal with the data that lies within multiple linear
subspaces from multi-view features perspective. However, in
real world applications, this assumption might be violated,
leading to unsatisfactory results when dealing with the data
from nonlinear subspaces [1]. Commonly, there are two ways
to handle the nonlinear subspaces: 1) Since data points drawn
on a nonlinear low-dimensional manifold are usually hidden
in a high-dimensional ambient space [2], using kernel-induced
mapping to map the data from the original input space to
a high-dimensional feature space may have the mapped data
resided in multiple linear subspaces [1], [3]; 2) Assuming that
the whole data points reside on a nonlinear manifold while the
local neighbors are linearly related, one can utilize manifold
regularization to preserve the local geometrical structure em-
bedded in a high-dimensional space [4], [5], [9]. In this paper,
we will focus on the second way, i.e., utilizing the manifold
constraint to figure out the nonlinear problem in multi-view
self-representation modeling.

The proposed method is inspired by the tensor multi-
view self-representation model (t-SVD-MSC) [22], and the
high-order local geometrical regularization, namely hyper-
Laplacian regularization [24]. Even with relatively desirable
clustering performance, the method [22] only emphasizes
global consensus among multiple views. Since view-specific
local geometrical structure is ignored, t-SVD-MSC may fail to
discover the discriminative structure of the nonlinear feature
spaces of the data [20], [53], which is essential to the actual
applications. On the other hand, beyond pairwise connectiv-
ity, the hypergraph [24] can capture high-order relationship
of the data locality. Due to this merit, its derived hyper-
Laplacian regularization has been widely introduced into low-
rank representation [9] and sparse coding [5]. However, [9]
only considers the single view feature, resulting in the loss
of complementary information from multiple heterogeneous
feature spaces.

In this paper, by taking advantage of these two works
aforementioned, we propose a new Hyper-Laplacian Reg-
ularized Multilinear Multi-View Self-representation model,
namely HLR-M2VS for short, for clustering task and semi-
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Figure 1: The Flowchart of HLR-M2VS. (a) multi-view fea-
tures X(1), . . . ,X(V ) of a collection of data points; (b) tensor
Z̃ is formed by firstly stacking all the subspace representations
{Z(v)}Vv=1 to construct tensor Z , and then rotating it to Z̃; (c)
tensor Z̃ would be optimized alternatively in unified tensor
space by using t-SVD based tensor low-rank norm, and in
view-specific feature spaces through hypergraph regularized
local geometrical constraint.

supervised learning. Fig. 1 shows the pipline of the pro-
posed HLR-M2VS method. Suppose we have a collection
of data points with multiple features X(1), . . . ,X(V ) (Fig. 1
(a)), HLR-M2VS firstly obtains the subspace representation
matrices Z(1), . . . ,Z(V ) (Fig. 1 (b)). Next, those subspace
coefficients will be alternatively optimized both in a unified
tensor space and view-specific feature spaces (Fig. 1 (c)). In
unified tensor space, the rotated subspace coefficient tensor
will be optimized by using t-SVD based tensor multi-rank
minimization, which can be considered as a global constraint
to ensure the consensus principle. In view-specific feature
spaces, by constructing one hypergraph from view-specific
subspace coefficient matrix, the local high-order geometrical
structure would be discovered by using the hyper-Laplacian
regularization. This can be regarded as local constraint in
each view independently. Those constraints interact with one
another, and the process runs iteratively until convergence is
arrived. Only in this way can the intrinsic nonlinear property
in original feature subspaces be clustered successfully.

Since the label information of a subset of the samples could
be effectively and efficiently propagated to the remaining unla-
beled data over a well-constructed graph, the proposed model
is highly suitable for being extended to a semi-supervised
classification model. In this paper, built upon HLR-M2VS
model, we additional propose an effective semi-supervised
HLR-M2VS classification model (semi-HLR-M2VS) by uti-
lizing the hyper-graph regularization. It is a parameter-free
method that automatically learn a set of weights for all the
graph Laplacian. By fusing the optimized view-specific hyper-
Laplacian matrices into a final hyper-Laplacian, the optimal
weights of edges are obtained by encoding the high-order
correlations not only among different views but also within
different instances. The established semi-supervised model can
capture both the global mixture of subspaces structure (by the
tensor low rankness) and the locally high-order linear structure
(by the hypergraph Laplacian) of the data.

In a word, for the first time to our knowledge, we design
an effective multi-view self-representation model for handling

nonlinear feature subspace, which can be confirmed by our
excellent clustering and semi-supervised classification perfor-
mance presented in Section VI. The major contributions can
be listed as follows:

• We design a new hyper-Laplacian regularized multilinear
multi-view self-representation model, i.e., HLR-M2VS,
to simultaneously consider global consensus constraint
and local view-specific geometrical regularization for
nonlinear subspace learning.

• An efficient optimization procedure is presented to solve
the HLR-M2VS optimization problem with empirically
fast convergence.

• The HLR-M2VS is further extended to semi-supervised
classification, where the fused hyper-Laplacian matrix is
learned without using explicit weight parameters.

• Our experimental results show that, on several challeng-
ing datasets, the proposed models are effectively better
than many the state-of-the-art methods in the multi-view
clustering and multi-view semi-supervised classification.

The remainder of this paper is organized as follows. In
Section II, we give a brief introduction of related works.
Section III is dedicated to some preliminaries on hypergraph
and tensor. In Section IV, we describe the proposed model
formally, and then present an algorithm to solve it. The semi-
supervised extension is presented in Section V. Experimental
results are provided in Section VI. Finally, we give the
conclusions in Section VII.

II. RELATED WORK

Before introducing the proposed model, in this section,
we give a brief review of the recent progress on multi-view
subspace learning and manifold regularization, which are the
two most related topics to the proposed model.

Supposing that all the views are generated from a latent sub-
space, the aim of subspace learning approaches is to discover
the shared latent subspace first and then conduct clustering.
The representative methods in this stream are proposed in [11],
[12], which applied canonical correlation analysis (CCA) and
kernel CCA to project the multi-view high-dimensional data
onto a low-dimensional subspace, respectively. [15] provided
a convex reformulation by replacing the squared loss used in
CCA, enforcing conditional independence between views. By
taking the advantage of deep representation, [14] proposed
a deep model which integrates autoencoder-based terms and
CCA to capture the deep information from both views. As the
CCA based approaches can only handle two views simulta-
neously, tensor CCA [13] extended them to do with arbitrary
number of views.

Alternatively, the success of recent multi-view subspace
clustering methods [21], [22], [54] can be attributed to un-
cover the relationship between samples either by using sparse
subspace clustering (SSC) [19] or by using low-rank repre-
sentation (LRR) [20]). To constrain the subspace coefficient
tensor, Zhang et al. proposed a method called LTMSC [21]
to extend the LRR to multi-view setting by employing the
unfolding based tensor norm. LTMSC tried to achieve the
tensor low rank in vector space such that the optimality in
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the representation might be ignored. On the contrary, in [22],
by introducing a new tensor decomposition scheme (t-SVD)
[16], [29], Xie et al. designed to impose a new type of low-
rank tensor constraint on the rotated subspaces coefficient
tensor to ensure the consensus among multiple views. While
reasonably effective, focusing on global constraint among
different views and ignoring the local geometrical structure
will lead to performance degeneration in the face of nonlinear
subspaces.

Numerous manifold learning approaches have been pro-
posed to preserve the local geometrical structure embedded in
a high-dimensional space, for example, the Locally Linear Em-
bedding (LLE) [6], Locality Preserving Projection (LPP) [2],
and Neighborhood Preserving Embedding (NPE) [7]. Instead
of finding embedding or projection function directly, it is more
convenient to resort to manifold regularization [8] to impose
local geometrical constraint on new feature space. Specifically,
it is reasonable to assume that if two data points are sufficiently
close on intrinsic manifold of the data distribution, then the
new representations of those two points through a certain basis
are also close to each other. This assumption was adopted
by [4], which proposed a graph Laplacian regularized sparse
coding. In the new coding space, learned sparse representations
could reflect the local manifold structures of the original data.
Beyond pairwise relationship, Gao et al. [5] even introduced
hypergraph based high-order geometrical constraint to propose
the hyper-Laplacian sparse coding. Similarly, in [9], authors
designed a non-negative sparse hyper-Laplacian regularized
low-rank representation model, termed NSHLRR, for sub-
space clustering. Nevertheless, NSHLRR is only a single-view
approach which can not take advantage of complementarity
among heterogeneous features.

III. NOTATIONS AND BACKGROUND

In this section, some notations and preliminaries used
throughout this paper will be provided. The bold calligraphy
letters (e.g., X ), the bold upper case letters (e.g., X), the
bold lower case letters (e.g., x), and the lower case letters
(e.g., xij) are used to represent tensors, matrices, vectors, and
entries, respectively. The matrix Frobenius norm is defined
as ||X||F := (

∑
i,j |xij |2)

1
2 . Let X = UΣVT be the SVD

of X, and σi(X) represent the ith largest singular value,
its matrix nuclear norm is defined as ||X||∗ :=

∑
i σi(X).

The corresponding singular-value thresholding (SVT) function
with threshold τ is Dτ (X) = UΣτV

T, in which Στ =
diag {max(σi(X)− τ, 0)}.

An N -way (or N -mode) tensor is a multi-linear structure
in Rn1×n2×...×nN . A slice of an tensor is a 2D section
defined by fixing all but two indices, and a fiber is a 1D
section defined by fixing all indices but one [27]. For a 3-way
tensor X , we use the Matlab notation X (k, :, :), X (:, k, :) and
X (:, :, k) to denote the kth horizontal, lateral and frontal slices,
respectively; X (:, i, j), X (i, :, j) and X (i, j, :) to denote the
mode-1, mode-2 and mode-3 fibers, and X f = fft(X , [ ], 3)
to denote the Fourier transform along the third dimension. In
particular, X (k) is used to represent X (:, :, k). Unfolding the
tensor X along the lth mode defined as unfoldl(X ) = X(l) ∈

Rnl×
∏

l′ ̸=l nl′ , which is a matrix whose columns are mode-
l fibers [27]. The opposite operation “fold” of the unfolding
is defined as foldl(X(l)) = X . The Frobenius norm of X
is ||X ||F := (

∑
i,j,k |xijk|2)

1
2 , and the ℓ1 norm of X is

||X ||1 :=
∑

i,j,k |xijk|.
The following five block-based operators, i.e., bcirc, bvec,

bvfold, bdiag and bdfold [16], are related to t-SVD. For X ∈
Rn1×n2×n3 , the block circulant matrix can be constructed by:

bcirc(X ) :=


X (1) X (n3) · · · X (2)

X (2) X (1) · · · X (3)

...
. . . . . .

...
X (n3) X (n3−1) · · · X (1)

 , (1)

the block vectorizing and its opposite operation

bvec(X ) :=


X (1)

X (2)

...
X (n3)

 , bvfold(bvec(X )) = X , (2)

and the block diag matrix and its opposite operation

bdiag(X ) :=

X
(1)

. . .
X (n3)

 , bdfold(bdiag(X )) = X .

(3)

A. Tensor Singular Value Decomposition (t-SVD)

Before understanding the t-SVD, we need to introduce the
follow definitions [16]:

Definition 1 (t-product). Let X be n1 × n2 × n3, and Y be
n2 ×n4 ×n3. The t-product X ∗Y is an n1 ×n4 ×n3 tensor

M = X ∗Y =: bvfold{bcirc(X )bvec(Y)}. (4)

Definition 2 (Tensor Transpose). Let X ∈ Rn1×n2×n3 , the
transpose tensor XT is an n2 × n1 × n3 tensor obtained by
transposing each frontal slice of X and then reversing the
order of the transposed frontal slices 2 through n3.

Definition 3 (Identity Tensor). The identity tensor I ∈
Rn1×n1×n3 is a tensor whose first frontal slice is the n1 ×n1

identity matrix and all other frontal slices are zero.

Definition 4 (Orthogonal Tensor). A tensor Q ∈ Rn1×n1×n3

is orthogonal if

QT ∗Q = Q ∗QT = I, (5)

where ∗ is the t-product.

Definition 5 (f-diagonal Tensor). A tensor is called f-
diagonal if each of its frontal slices is diagonal matrix.

Given the above definitions, we can define the t-SVD of X :

X = U ∗ S ∗ VT, (6)

where U and V are orthogonal tensors of size n1 × n1 × n3

and n2×n2×n3 respectively. S denotes an f-diagonal tensor
with the size of n1 × n2 × n3, and ∗ denotes the t-product.
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B. Tensor Nuclear Norm via t-SVD

The tensor t-SVD can be reformulated as the following [29]:

X =

min(n1,n2)∑
i=1

U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)T. (7)

The tensor multi-rank can be defined as follows [16]–[18] :

Definition 6 (Tensor multi-rank). The multi-rank of X ∈
Rn1×n2×n3 is a vector r ∈ Rn3×1 with the i-th element equal
to the rank of the i-th frontal slice of X f .

Now, the tensor nuclear norm (t-TNN) is given by

||X ||~ :=

min(n1,n2)∑
i=1

n3∑
k=1

|Sf (i, i, k)|. (8)

Note that the t-TNN is a valid norm, and is also the tightest
convex relaxation to ℓ1 norm of the tensor multi-rank in [17],
[18].

C. Hypergraph Preliminaries

Given a hypergraph G = (V,E,W), V represents a finite
set of vertices, and E is a family of hyperedge e of V such that
∪e∈E = V, and a positive number w(e), which is the element
of weight matrix W, is associated with each hyperedge e.
An incidence matrix H with a size of |V| × |E| denotes the
relationship between the vertices and the hyperedges, with
entries defined as:

h(vi, ej) =

{
1, if vi ∈ ej

0, otherwise.
(9)

In fact, H indicates to which hyperedge a vertex belongs.
Given incidence matrix H, the vertex degree of each vertex
vi ∈ V and the edge degree of hyperedge ej ∈ E can be
calculated as:

d(vi) =
∑
ej∈E

w(ej)h(vi, ej), (10)

d(ej) =
∑
vi∈V

h(vi, ej). (11)

Let DV and DE denote the diagonal matrices whose elements
correspond to the degree of each vertex d(vi) and the degree of
a hyperedge d(ej), respectively, then the unnormalized hyper-
Laplacian matrix [24] can be defined as:

Lh = DV −HWD−1
E HT. (12)

From the above definition, the main difference between a
hypergraph and a traditional pairwise graph lies in that a
hyperedge can link more than two vertices. Therefore, the
hypergraph can be considered as a good model to represent
local group information and high order relationship among
samples. For more details about the hypergraph, please refer
to [24].

IV. HYPER-LAPLACIAN REGULARIZED M2VS

Let X(v) = [x
(v)
1 ,x

(v)
2 , . . . ,x

(v)
N ] ∈ Rd(v)×N denote the

feature matrix corresponding to the v-th view, and Z(v) =

[z
(v)
1 , z

(v)
2 , . . . , z

(v)
N ] ∈ RN×N is subspace coefficient for the

v-th view. The objective function of t-SVD-MSC proposed in
[22] is defined as follows:

min
Z(v),E(v)

λ||E||2,1 + ||Z||~,

s.t. X(v) = X(v)Z(v) +E(v), v = 1, . . . , V,

Z = Φ(Z(1),Z(2), . . . ,Z(V )),

E = [E(1);E(2); . . . ,E(V )],

(13)

where Φ(·) denotes how to constructs the tensor Z , i.e., merge
different Z(v) to a tensor, and rotate it to change its dimen-
sionality to N × V ×N , as illustrated in Fig. 2. The benefit
of tensor rotation primarily comes from the following [22]:
the structure of self-representation coefficient can be preserved
in Fourier domain, as well as the computational complexity
can be significantly reduced. Also, the following relationship
can be found: Φ−1

(v)(Z) = Z(v), where Φ−1(·) represents the
inverse functions of Φ(·), and its subscript (v) denotes the
v-th frontal slice. The term E = [E(1);E(2); . . . ,E(V )] can
restrict the column of E(v) from each view to have similar
magnitude. Compared with unfolding based tensor low-rank
norm [21], the t-TNN is a better way to extend the low
rank property in matrix space into tensor space, such that the
block-diagonal structure can be effectively discovered in tensor
space. Consequently, the objective function in Eq. (13) can be
able to capture the optimal self-representations via ensuring
the consensus principle among different views.

V

N

N

V

N

N

A B

shiftdim( , 1)A

shiftdim( , 2)B

Figure 2: The rotated coefficient tensor in our approach.

While the global low rank property is captured, the intrinsic
geometrical structure within each view is not taken into
account by the objective function (13), leading to the lost
of the locality and similarity information within individual
view. To improve the t-SVD-MSC in this regard, we pro-
pose a hyper-laplacian regularized multilinear multi-view self-
representation model (HLR-M2VS) to model the low rank
constraint in unified self-representation tensor space and geo-
metrical constraint in individual self-representation coefficient
matrix simultaneously.
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A. Problem Formulation

The objective function of the proposed method can be
formulated as:

min
Z(v),E(v)

λ1||E||2,1 + λ2

V∑
v=1

tr(Z(v)L
(v)
h Z(v)T) + ||Z||~,

s.t. X(v) = X(v)Z(v) +E(v), v = 1, . . . , V,

Z = Φ(Z(1),Z(2), . . . ,Z(V )),

E = [E(1);E(2); . . . ,E(V )].
(14)

where L
(v)
h denotes the view-specific hyper-Laplacian matrix

built on the optimized subspace representation Z(v). The
hyper-Laplacian regularized term is constructed based on the
natural assumption that if several feature points x

(v)
i1

, . . . ,x
(v)
ik

are close in the intrinsic geometry of the feature distribution,
their view-specific mappings in self-representation feature
space are also close to each other. When the L

(v)
h is replaced

by L(v), which is a normal Laplacian matrix built on Z(v), this
hyper-Laplacian regularized term will be reduced to traditional
graph Laplacian constraint that can only capture the pairwise
relationship.

The optimization problem (14) could be solved via the
inexact Augmented Lagrange Multiplier (ALM) [23]. By in-
troducing the auxiliary matrix variable Q(v) and the auxiliary
tensor variable G to replace Z(v) in the trace term and Z
in the t-TNN norm respectively, the original problem can be
reformulated as the following unconstrained one:

L(Z(1), . . . ,Z(V );E(1), . . . ,E(V );Q(1), . . . ,Q(V );G)

= λ1||E||2,1 + λ2

V∑
v=1

tr(Q(v)L
(v)
h Q(v)T) +

(
⟨Bv,Q

(v) − Z(v)⟩

+
µ2

2
||Q(v) − Z(v)||2F

)
+ ||G||~ +

V∑
v=1

(
⟨Yv,X

(v)−

X(v)Z(v) −E(v)⟩+ µ1

2
||X(v) −X(v)Z(v) −E(v)||2F

)
+ ⟨W ,Z − G⟩+ ρ

2
||Z − G||2F .

(15)
where Yv, Bv , and W represent Lagrange multipliers, µ1, µ2

and ρ denote the penalty parameters.

B. Optimization

The optimization process could be separated into four steps:
Z(v)-subproblem: When E, Q(v), and G keep fixed, note

that we have Φ−1
(v)(W) = W(v) and Φ−1

(v)(G) = G(v), Z(v)

can be achieved by solving the following subproblem:

min
Z(v)

⟨Yv,X
(v) −X(v)Z(v) −E(v)⟩+ µ1

2
||X(v) −X(v)Z(v)

−E(v)||2F + ⟨Bv,Q
(v) − Z(v)⟩+ µ2

2
||Q(v) − Z(v)||2F

+ ⟨W(v),Z(v) −G(v)⟩+ ρ

2
||Z(v) −G(v)||2F .

(16)

The closed-form of Z(v) can be calculated by setting the
derivative of (16) to zero:

Z(v)∗ =(ρI+ µ1X
(v)TX(v))−1

(
X(v)TYv + µ1X

(v)TX(v)

− µ1X
(v)TE(v) −W(v) + ρG(v) +Bv + µ2Q

(v)

)
.

(17)
Note that when ρ and µ1 are carefully chosen, i.e., ρ = µ1,
the matrix inverse term needs to be pre-calculated only once.
E(v)-subproblem: When Z(v) is fixed, we have

E∗ = argmin
E

λ1

µ1
||E||2,1 +

1

2
||E−D||2F , (18)

where D is built through vertically concatenating the matrices
X(v) − X(v)Z(v) + (1/µ1)Yv together along column. This
subproblem has the following solution,

E∗
:,i =


||D:,i||2 − λ1

µ1

||D:,i||2
D:,i, ||D:,i||2 >

λ1

µ1

0 otherwise.

(19)

where D:,i denotes the i-th column of the matrix D.
Q-subproblem: When Z(v), and L

(v)
h are given, the closed-

form solution of this subproblem can be calculated by:

Q∗ = argmin
Q

λ3tr(Q(v)L
(v)
h Q(v)T) + ⟨Bv,Q

(v) − Z(v)⟩

+
µ2

2
||Q(v) − Z(v)||2F

= (µ2Z
(v) −Bv)(2λ3L

(v)
h + µ2I)

−1,
(20)

Algorithm 1: t-SVD based Tensor Nuclear Norm Mini-
mization

Input: Observed tensor F ∈ Rn1×n2×n3 , scalar τ > 0
Output: tensor G

1 Ff = fft(F , [ ], 3), τ ′ = n3τ ;
2 for j = 1 : n3 do
3 [U(j)

f ,S(j)
f ,V(j)

f ] = SVD(F(j)
f );

4 J (j)
f = diag{(1− τ ′

S(j)
f

(i,i)
)+}, i = 1, . . . ,min(n1, n2);

5 S(j)
f,τ ′ = S(j)

f J (j)
f ;

6 G(j)
f = U(j)

f S(j)
f,τ ′V

(j)T

f ;
7 end
8 G = ifft(Gf , [ ], 3);
9 Return tensor G.

G-subproblem: Given {Z(v)}Vv=1, we solve the following
subproblem for G:

G∗ = argmin
G

||G||~ +
ρ

2
||G − (Z +

1

ρ
W)||2F . (21)

To obtain the solution of (21), we use the following theorem
[22]:

Theorem 1. [22] For τ > 0 and G,F ∈ Rn1×n2×n3 , the
globally optimal solution to the following problem

min
G

τ ||G||~ +
1

2
||G −F ||2F (22)
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can be calculated by the tensor tubal-shrinkage operator

G = Cn3τ (F) = U ∗ Cn3τ (S) ∗ VT, (23)

where F = U ∗ S ∗VT and Cn3τ (S) = S ∗J , herein, J is
an n1 ×n2 ×n3 f-diagonal tensor whose diagonal element in
the Fourier domain is J f (i, i, j) = (1− n3τ

S(j)
f (i,i)

)+.

We provide the optimization procedure of the problem (21)
is Algorithm 1. The Yv , Bv, and W , as well as the parameters
µ1, µ2, and ρ could be updated as follows:

Y∗
v = Yv + µ1(X

(v) −X(v)Z(v) −E(v)), (24)

B∗
v = Yv + µ2(Q

(v) − Z(v)), (25)
W∗ = W + ρ(Z − G), (26)
µi = min(ηµi, µmax), i = 1, 2, (27)
ρ = min(ηρ, ρmax). (28)

Finally, the optimization procedure of the proposed HLR-
M2VS method is summarized in Algorithm 2.

In [23], the authors has proved the convergence of the
inexact ALM, whose number of blocks is smaller than 3.
However, its convergence properties for the objective function
with N (N ≥ 3) blocks variables, have remained unknown.
Since we have blocks {Z(v)}Vv=1, {E(v)}Vv=1, {Q(v)}Vv=1, and
G in Algorithm 2, and the objective function of (14) is not
smooth, and even with involving the updated hyper-Laplacian
in each iteration, it might be difficult to prove the convergence
theoretically. Fortunately, the proposed method converges fast
in practice, and we would provide empirical convergence
analysis in the experimental section VI-E.

Algorithm 2: Hyper-Laplacian Regularized M2VS
Input: Multi-view feature matrices: X(1),X(2), . . . ,X(V ), λ, and

cluster number K
Output: Clustering results C

1 Initialize Z(v) = E(v) = Q(v) = Yv = Bv = 0, i = 1, . . . , V ;
G = W = 0;
µ1 = µ2 = ρ = 10−5, η = 2, µmax = ρmax = 1010, ε = 10−7;

2 while not converge do
3 Compute hyper-Laplacian matrices {L(v)

h }Vv=1 from {Z(v)}Vv=1
by using Eqn. (12);
// for Z

4 Update {Z(v)}Vv=1 by solving (17);
// for E

5 Update E using (18);
// for Q;

6 Update {Q(v)}Vv=1 by using (20);
7 Obtain Z = Φ(Z(1),Z(2), . . . ,Z(V ));

// for G
8 Update G via Algorithm 1;
9 Update Yv , Bv , W , µ1, µ2, and ρ by using (24)∼(28),

respectively;
10 (G(1), . . . ,G(V )) = Φ−1(G);
11 Check the convergence conditions:

||X(v) −X(v)Z(v) −E(v)||∞ < ε and
||Z(v) −G(v)||∞ < ε;

12 end
13 Obtain affinity matrix

A = 1
V

∑V
v=1 |Z(v)|+ |Z(v)T |;

14 Apply spectral clustering on matrix A;
15 Return Clustering result C.

V. HLR-M2VS MODEL FOR SEMI-SUPERVISED
CLASSIFICATION

The proposed HLR-M2VS model not only can perform
well in unsupervised learning, but also can be applied to
semi-supervised learning scenario effectively. Since labeled
examples are often expensive to obtain while unlabeled ones
are easy to acquire, the semi-supervised learning problem has
attracted an increasing amount of interest over the past decades
[25], [26]. Among these methods is a promising family of
techniques that exploit the manifold structure of the data.
Under the manifold assumption, labeled and unlabeled samples
are treated as vertices of a graph, such that the category
information can be propagated from labeled ones to unlabeled
ones through edges.

In this section, we present a novel parameter-free semi-
supervised learning framework incorporating the above pro-
posed HLR-M2VS with weights adaptive multiple graph fu-
sion. Suppose there are l (1 ≤ l ≤ n) labeled data samples,
and u unlabeled ones, the proposed semi-supervised learning
model is defined as:

min
F∈Rn×K

V∑
v=1

√
tr(FTL

(v)
h F) s.t. Fl = Yl, (29)

where F = [Fl;Fu] ∈ Rn×K denotes the class indicator
matrix, with Fl and Fu including probability vectors (each
row) for the labeled and unlabeled samples, respectively;
Yl = [y1, . . . ,yl]

T represents the label matrix in which
yi ∈ RK×1 is one-hot, with yij = 1 indicating that the i-th
sample belongs to the j-th class; L(v)

h is the hyper-Laplacian
matrix optimized iteratively by the Algorithm 2, which can be
split into four blocks:

L
(v)
h =

[
L
(v)
ll L

(v)
lu

L
(v)
ul L

(v)
uu

]
. (30)

The Lagrange function of problem (29) can be written as:
V∑

v=1

√
tr(FTL

(v)
h F) + Ω(Λ,F), (31)

where Λ denotes the Lagrange multiplier, Ω(Λ,F) is the
formalized term derived from the constraints. By taking its
derivative w.r.t F and setting the derivative to zero,

V∑
v=1

γ(v)∂F(tr(FTL
(v)
h F)) + ∂F(Ω(Λ,F)) = 0, (32)

which means
γ(v) =

1

2

√
tr(FTL

(v)
h F)

. (33)

Since γ(v) is dependent on variable F, the problem (32) can
not be solved directly. Alternatively, we resort to the following
optimization problem:

min
F∈Rn×K

V∑
v=1

γ(v)tr(FTL
(v)
h F), s.t. Fl = Yl, (34)

which can be approximately solved by initializing the weight
factor γ(v) = 1/V , and then minimizing between F and



SUBMITTED TO IEEE TRANS. ON CYBERNETICS 7

{γ(v)}Vv=1 alternatively by fixing the other variables. Specifi-
cally, given {γ(v)}Vv=1, the fused hyper-Laplacian matrix can
be calculated by

L∗
h =

V∑
v=1

γ(v)L
(v)
h , (35)

then accordingly to [25], the class indicator for the unlabeled
data can be achieved by

Fu = −L∗
uuL

∗
ulYl. (36)

When Fu is fixed, let F = [Yl;Fu], γ(v) can be updated
by Eqn. (33). Once the indicator matrix Fu is achieved, the
predicted label for the unlabeled data can be calculated by the
following function:

yi = argmax
j

Fij , ∀i = l + 1, . . . , n;∀j = 1, 2, . . . ,K. (37)

The proposed semi-supervised classification method can be
easily integrated into the aforementioned HLR-M2VS model,
and we refer it to as the Semi-HLR-M2VS. Finally, the opti-
mization procedure of the proposed Semi-HLR-M2VS method
is summarized in Algorithm 3. It is noteworthy that, if we
have matrix A on hand (obtained from Algorithm 2), we can
directly use it to construct the Laplacian matrix, and calculate
the final results by alternative updating between Eqn. (33) and
(36).

Algorithm 3: Semi-supervised HLR-M2VS for Classifica-
tion

Input: Multi-view feature: X(1),X(2), . . . ,X(V ), λ, and cluster
number K, label matrix Yl

Output: The predicted labels for the unlabeled data

1 Including the initialization step of Alg. 2; Initialize the weight
γ(v) = 1

V
;

2 while not converge do
3 Compute hyper-Laplacian matrix L

(v)
h for each view by using (12);

4 Calculate L∗
h using (35), and achieve Fu by using (36);

5 Update {γ(v)}Vv=1 by solving (33);
6 Include steps 4 ∼ 11 of the Alg. 2;
7 end
8 Obtain the predicted labels by using (37);
9 Return The predicted labels for the unlabeled data.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

TABLE I: Statistics of different test datasets

Dataset Images Objective Clusters

Extended YaleB 640 Face 10
ORL 400 Face 40
Notting-Hill 4660 Face 5

Scene-15 4485 Scene 15
MITIndoor-67 5360 Scene 67

COIL-20 1440 Generic Object 20
Caltech-101 8677 Generic Object 101
Caltech-256 30607 Generic Object 256

A. Experimental Setup

In this section, to investigate the performance of the pro-
posed hyper-Laplacian regularized multilinear multi-view self-
representation (HLR-M2VS) model, the comprehensive exper-
iments for both unsupervised learning (image clustering) and
semi-supervised learning (image classification) are conducted.

For unsupervised learning task, we conduct experiments
on eight challenging image datasets to evaluate the proposed
clustering method, compared with other related state-of-the-
art multi-view clustering approaches. Three applications ae
included: face clustering (Extended YaleB1, ORL2, Notting-
Hill [38] datasets), scene clustering (Scene-153, MITIndoor-
67 [50]), and generic object clustering (COIL-204, Caltech-101
[55], Caltech-256 [56]). The description of all the datasets are
shown in Table I. For semi-supervised learning task, we select
three image datasets (Scene-15, MITIndoor-67, Caltach-101)
to present the classification performance of the proposed semi-
supervised method, compared with other related state-of-the-
art multi-view semi-supervised classification approaches.

Dataset Descriptions: The Extended YaleB dataset consists
38 individuals, each of which has 64 near frontal images
captured under different illumination. Following [20], [21], the
first 10 individuals (640 images) are used in our experiments.

The ORL dataset includes 40 individuals with 10 different
images per person. All these 10 images are taken from
different lighting, times, facial details, and facial expressions.

The Notting-Hill [38] dataset consists of the faces of 5 main
casts in the movie “Notting-Hill”. This dataset includes 4660
faces obtained from 76 tracks. We reduce each facial image
from original size of 120× 150 to the size of 40× 50.

Scene-15 dataset was provided in [39]–[41] with 15 cate-
gories, including kitchen, living room, bedroom, etc. Images
are about 250 × 300 resolution, with 210 to 410 images per
category. It contains a wide range of outdoor and indoor scene
environments.

MITIndoor-67 dataset, which was introduced by the work
[50], has more than 15K indoor pictures with 67 categories.
We conduct clustering on its training subset including 5360
images. Note that this dataset is very difficult for traditional
clustering methods.

The COIL-20 dataset has 1440 images of 20 object cat-
egories generated from varying angels, and each category
includes 72 images. Similar to [21], [47], all the images in
our experiment are normalized to 32× 32.

The Caltech-101 dataset [55] contains 8677 image of object-
s belonging to 101 categories, with about 40 to 800 images per
category. Usually, traditional multi-view clustering methods
[31], [54] are commonly evaluated under sub-categories of
this dataset. Instead of using a small portion, we use the whole
dataset to evaluate the proposed methods.

The Caltech-256 dataset [56] is a challenging set for clus-
tering with 256 object categories containing a total of 30607
images. Compared with Caltech-101, it is collected in a similar

1https://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
2http://www.uk.research.att.com/facedatabase.html
3http://www-cvr.ai.uiuc.edu/ponce grp/data/
4http://www.cs.columbia.edu/CAVE/software/softlib/
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way but with some improvements: 1) the number of categories
is more than doubled; 2) the minimum number of images in
each category is increased from 31 to 80. It is a relatively
large dataset for subspace clustering methods.

View/Feature Description: For all the face datasets and
COIL-20 datasets, similar to [21], three types of features are
extracted: intensity, LBP [48] and Gabor [49]. The dimen-
sionalities of LBP and Gabor are 3304 and 6750, respectively.
For more details about these feature extraction, please refer to
[22].

TABLE II: Multi-view features of different datasets

Dataset views/features

Extended YaleB (Intensity, LBP, Gabor)
ORL (Intensity, LBP, Gabor)
Notting-Hill (Intensity, LBP, Gabor)

Scene-15 (PHOW, PRI-CoLBP, CENTRIST)
MITIndoor-67 (PHOW, PRI-CoLBP, CENTRIST, VGG19)

COIL-20 (Intensity, LBP, Gabor)
Caltech-101 (PHOW, PRI-CoLBP, CENTRIST, InceptionV3)
Caltech-256 (PHOW, PRI-CoLBP, CENTRIST, VGG19, InceptionV3)

For Scene-15, MITIndoor-67, Caltech-101, Caltech-256,
three types of handcrafted visual features are extracted: (1)
Pyramid histograms of visual words (PHOW)5 [43]; (2)
Pairwise rotation invariant co-occurrence local binary pattern
(PRI-CoLBP) feature [44]; (3) CENsus TRansform hISTogram
(CENTRIST) feature [42]. For more details about these feature
extraction, please refer to [22].

Besides the above three types of features, two powerful
deep features, i.e., the VGG-VD [51] and Inception-V3 [57]
which were pre-trained on ILSVRC12 [52], are imported as
new views to complement handcrafted features for MITIndoor-
67 and Caltech-101, respectively. Following [22], for VGG-
VD feature, we change the smaller size of image to 448
while keeping the aspect ratio, and utilize the activations
of the penultimate layer as feature vector. The features are
extracted from 5 scales {2s, s = −1,−0.5, 0, 0.5, 1}, and all
local features are pooling together regardless of scales and
locations. As for Inception-V3 feature, it is directly extracted
from the activations of the penultimate layer, resulting in a
2048-dimensional feature vector. The employed features for
all the datasets are listed in Table II.

Evaluation Measures. For clustering task, we employ six
popular metrics to evaluate the performances [30]: Normalized
Mutual Information (NMI), Accuracy (ACC), Adjusted Rank
index (AR), F-score, Precision and Recall. For the detailed
definitions, please refer to [30]. For each of the metrics, the
higher value means the better performance.

For semi-supervised classification, the evaluation metric is
accuracy (the proportion of the correct-classified data points in
all unlabeled data). It is noteworthy that the accuracy used in
semi-supervised setting has slight difference from that in clus-
tering, which needs additional permutation mapping function
to assign cluster to its corresponding groundtruth. Note that in

5This feature was extracted by using vlfeat toolbox [45]

all datasets, for both clustering and semi-supervised learning
tasks, we report the final results by the average of 20 runs. For
more details about the means and standard deviations, please
refer to the supplemental material.

Two parameters λ1 and λ2 need to be tuned in the proposed
model, and we find their empirical values are within the range
[0.01, 0.2] and [0.1, 0.9], respectively. More details about the
parameters will be discussed in Section VI-D. The weight
of the hyperedge in the v-th hypergraph is defined on the
Euclidean distance between the two columns in A(v) =
1
2 (|Z

(v)|+ |Z(v)T |). The k-Nearest Neighbor (kNN) is used to
construct the hyperedges with fixing k = 5 in all experiments.
The parameters settings of all the competitors are set according
to their original papers, and we have tuned these parameters
to show the best results. The experiments are implemented in
Matlab on a workstation with 4.0GHz CPU, 128GB RAM,
and TITANX GPU (12GB caches). The source codes and
some results of the proposed models can be achieved at
https://www.researchgate.net/profile/Yuan Xie4.

B. Experiments on Clustering

Competitors: The standard spectral clustering algorithm
with the most informative view (SPCbest), LRR method with
the most informative view (LRRbest), the non-negative sparse
hyper-Laplacian regularized LRR with most informative view
(NSH-LRRbest) [9]. All these methods belong to single-view
baselines.

The following state-of-the-art methods are also includ-
ed: the robust multi-view spectral clustering via low-rank
and sparse decomposition (RMSC) [10], diversity-induced
multi-view subspace clustering (DiMSC) [47], multi-view
learning with adaptive neighbours (MLAN) [36], low-rank
tensor constrained multi-view subspace clustering (LTM-
SC) [21], exclusivity-consistency regularized multi-view sub-
space clustering (ECMSC) [59], the t-SVD based multi-view
subspace clustering (t-SVD-MSC), learning and transferring
deep ConvNet representations with group-sparse factorization
(GSNMF-CNN) [37].

TABLE III: Clustering results on Extended YaleB. We
set λ1 = 0.05 and λ2 = 0.2 in proposed HLR-M2VS.

Method NMI ACC AR F-score Precision Recall

SPCbest 0.360 0.366 0.225 0.308 0.296 0.310
LRRbest 0.627 0.615 0.451 0.508 0.481 0.539
NSH-LRRbest 0.632 0.629 0.431 0.523 0.507 0.545

RMSC 0.157 0.210 0.060 0.155 0.151 0.159
DiMSC 0.636 0.615 0.453 0.504 0.481 0.534
MLAN 0.352 0.346 0.093 0.213 0.159 0.321
LTMSC 0.637 0.626 0.459 0.521 0.485 0.539
ECMSC 0.759 0.783 0.544 0.597 0.513 0.718
t-SVD-MSC 0.667 0.652 0.500 0.550 0.514 0.590
HLR-M2VS 0.703 0.670 0.529 0.577 0.560 0.595

1) Experiments on Face Clustering: Surprisingly, the pro-
posed method obtains a perfect result on the ORL dataset,
as it is shown Table IV. For Extended YaleB dataset (Table
III), it has been pointed out in [21], [22] that LBP and Gabor
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TABLE IV: Clustering results on ORL. We set λ1 = 0.2
and λ2 = 0.4 in proposed HLR-M2VS.

Method NMI ACC AR F-score Precision Recall

SPCbest 0.884 0.725 0.655 0.664 0.610 0.728
LRRbest 0.895 0.773 0.724 0.731 0.701 0.754
NSH-LRRbest 0.913 0.786 0.733 0.740 0.707 0.775

RMSC 0.872 0.723 0.645 0.654 0.607 0.709
DiMSC 0.940 0.838 0.802 0.807 0.764 0.856
MLAN 0.854 0.705 0.384 0.376 0.254 0.721
LTMSC 0.930 0.795 0.750 0.768 0.766 0.837
ECMSC 0.947 0.854 0.810 0.821 0.783 0.859
t-SVD-MSC 0.993 0.970 0.967 0.968 0.946 0.991
HLR-M2VS 1.000 1.000 1.000 1.000 1.000 1.000

TABLE V: Clustering results on Notting-Hill. We set
λ1 = 0.04 and λ2 = 0.9 in proposed HLR-M2VS.

Method NMI ACC AR F-score Precision Recall

SPCbest 0.723 0.816 0.712 0.775 0.780 0.776
LRRbest 0.579 0.794 0.558 0.653 0.672 0.636
NSH-LRRbest 0.615 0.808 0.579 0.667 0.684 0.651

RMSC 0.585 0.807 0.496 0.603 0.621 0.586
DiMSC 0.799 0.837 0.787 0.834 0.822 0.827
MLAN 0.476 0.584 0.301 0.504 0.380 0.748
LTMSC 0.779 0.868 0.777 0.825 0.830 0.814
ECMSC 0.817 0.767 0.679 0.764 0.637 0.954
t-SVD-MSC 0.900 0.957 0.900 0.922 0.937 0.907
HLR-M2VS 0.982 0.996 0.990 0.986 0.989 0.984
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Fig. 3: Comparison among LRR with all the view features,
NSH-LRR with the most information view, t-SVD-MSC, and
the proposed HLR-M2VS in terms of accuracy and NMI on
face clustering datasets.

features will lead to degenerate views, which is illustrated in
Fig. 3 (see the first group bars). The t-SVD-MSC and the
proposed HLR-M2VS seem to be insusceptible to those two
degenerate views, and moreover, the HLR-M2VS performs
better due to the intrinsic geometrical structures being captured
through hyper-Laplacian constraint.

Table V presents the results on Notting-Hill, in which

our method achieves nearly perfect result, outperforms all
competitors by a large margin. Our result even beat the state-
of-the-art result achieved by [46] (with NMI 0.920 and ACC
0.934 in [46], vs NMI 0.982 and ACC 0.996 in proposed
method), where two additional constraints regarding the video-
specific priori are utilized, i.e., the faces, which appear together
in the same frame, are not likely to belong to a same person;
while the faces can be considered to be captured from a same
person if they are contained in the same track.

TABLE VI: Clustering results on Scene-15. We set
λ1 = 0.01 and λ2 = 0.1 in proposed HLR-M2VS.

Method NMI ACC AR F-score Precision Recall

SPCbest 0.421 0.437 0.270 0.321 0.314 0.329
LRRbest 0.426 0.445 0.272 0.324 0.316 0.333
NSH-LRRbest 0.521 0.515 0.389 0.441 0.436 0.447

RMSC 0.564 0.507 0.394 0.437 0.425 0.450
DiMSC 0.269 0.300 0.117 0.181 0.173 0.190
MLAN 0.475 0.331 0.151 0.248 0.149 0.733
LTMSC 0.571 0.574 0.424 0.465 0.452 0.479
ECMSC 0.463 0.457 0.303 0.357 0.318 0.408
t-SVD-MSC 0.858 0.812 0.771 0.788 0.743 0.839
HLR-M2VS 0.895 0.878 0.850 0.861 0.850 0.871

2) Experiments on Scene Clustering: In Table VI, the re-
sults of Scene-15 dataset, we can see a noticeable performance
gain by comparing the t-SVD-MSC with the LTMSC method.
Although the performance is excellent, the t-SVD-MSC can
still be improved significantly by integrating the high-order
local structural information derived from hyper-Laplacian
regularizer. This can be further supported by the confusion
matrices shown in Fig. 4, where column and row names are the
predicted labels and the groundtruth, respectively. The way to
calculation of predicted labels is the same as the method used
in computing the metric ACC [53]. Compared with t-SVD-
MSC, accuracy in almost all categories has been improved
by the proposed methods. Specially, the accuracy in “kitchen”
and “MIThighway” is dramatically improved with 0.90 vs 0.00
and 0.91 vs 0.59, respectively. The biggest confusion occurs
between two indoor classes, i.e., “bedroom” and “livingroom”,
which coincides well with the the confusion distribution in
[41].

As for MITIndoor-67 dataset, compared with t-SVD-MSC
(see table VII), our method gains significant improvement
around 11.6%, 11.8%, 17.5%, 17.2%, 17.0%, and 17.5% in
terms of NMI, ACC, AR, F-score, Precision, and Recall,
respectively. This is another evidence that the local geometrical
information provided by hypergraph can make a complement
to the global low rank imposed on unified tensor space.

3) Experiments on Generic Clustering: As shown in Ta-
ble VIII, on COIL-20 dataset, the proposed methods also
outperforms four recently published approaches, i.e., RMSC,
DiMSC, LTMSC, and t-SVD-MSC. The results for Caltech-
101 dataset are shown in Table IX. By introducing the more
powerful deep feature (Inception-V3), the single-view baseline
approaches, i.e., SPC and LRR, even perform better than
multi-view methods such as RMSC and DiMSC. It might
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Fig. 4: Comparison the confusion matrices between t-SVD-MSC and the proposed method on Scene-15 dataset.

TABLE VII: Clustering results on MITIndoor-67. We set
λ1 = 0.02 and λ2 = 0.2 in proposed HLR-M2VS.

Method NMI ACC AR F-score Precision Recall

SPCCNN
best 0.559 0.443 0.304 0.315 0.294 0.340

LRRCNN
best 0.226 0.120 0.031 0.045 0.044 0.047

NSH-LRRCNN
best 0.270 0.202 0.106 0.118 0.117 0.120

RMSC 0.342 0.232 0.110 0.123 0.121 0.125
DiMSC 0.383 0.246 0.128 0.141 0.138 0.144
MLAN 0.408 0.232 0.012 0.041 0.021 0.662
LTMSC 0.546 0.431 0.280 0.290 0.279 0.306
ECMSC 0.489 0.353 0.216 0.228 0.213 0.247
GSNMF-CNN 0.673 0.517 0.264 0.372 0.367 0.381
t-SVD-MSC 0.750 0.684 0.555 0.562 0.543 0.582
HLR-M2VS 0.866 0.802 0.730 0.734 0.713 0.757

because that both the DiMSC and RMSC are affected by
the less representation capabilities of the handcrafted features.
However, this does not mean that the traditional feature is
unnecessary. The performance gains of HLR-M2VS over all
competitors on all the datasets confirm complementary both
in feature level and subspace level. In feature level, each
view might has its own knowledge that other views do not
possess, which is help the model improve the clustering
performance effectively. In subspace level, the local geomet-
rical information from all the views will be considered as a
complement to the global low-rank based consensus to upgrade
the performance to a higher level. The similar observation can
be seen from the results Table X of the Caltech-256.

C. Experiments on Semi-Supervised Classification
To evaluate our proposed model on semi-supervised learning

task, we select three challenging image datasets that are used
in clustering task for the classification in our experiments, i.e.,
Scene-15, MITIndoor-67, and Caltech-101. The aim of semi-
supervised learning is to reveal more unlabeled information
from limited known labeled data, so we only select the
percentage of labeled samples ranges from 10% to 60% for
training. For each dataset, we run 10 times for each algorithms
with randomly labeled data sets, and then report results of
classification accuracy by averaging the results corresponding
to each labeled percentage. Note that the proposed Semi-
HLR-M2VS does not introduce any other additional parameter.

TABLE VIII: Clustering results on COIL-20. We set
λ1 = 0.1 and λ2 = 0.8 in proposed HLR-M2VS.

Method NMI ACC AR F-score Precision Recall

SPCbest 0.806 0.672 0.619 0.640 0.596 0.692
LRRbest 0.829 0.761 0.720 0.734 0.717 0.751
NSH-LRRbest 0.840 0.785 0.738 0.758 0.726 0.793

RMSC 0.800 0.685 0.637 0.656 0.620 0.698
DiMSC 0.846 0.778 0.732 0.745 0.739 0.751
MLAN 0.945 0.844 0.804 0.815 0.726 0.929
LTMSC 0.860 0.804 0.748 0.760 0.741 0.776
ECMSC 0.942 0.782 0.781 0.794 0.695 0.925
t-SVD-MSC 0.884 0.830 0.786 0.800 0.785 0.808
HLR-M2VS 0.960 0.852 0.833 0.842 0.757 0.949

TABLE IX: Clustering results on Caltech-101. We set
λ1 = 0.08 and λ2 = 0.2 in proposed HLR-M2VS.

Method NMI ACC AR F-score Precision Recall

SPCCNN
best 0.723 0.484 0.319 0.340 0.597 0.235

LRRCNN
best 0.728 0.510 0.304 0.339 0.627 0.231

NSH-LRRCNN
best 0.757 0.522 0.338 0.368 0.635 0.260

RMSC 0.573 0.346 0.246 0.258 0.457 0.182
DiMSC 0.589 0.351 0.226 0.253 0.362 0.191
MLAN 0.748 0.579 0.222 0.265 0.173 0.560
LTMSC 0.788 0.559 0.393 0.403 0.670 0.288
ECMSC 0.606 0.359 0.273 0.286 0.433 0.214
GSNMF-CNN 0.775 0.534 0.246 0.275 0.230 0.347
t-SVD-MSC 0.858 0.607 0.430 0.440 0.742 0.323
HLR-M2VS 0.872 0.650 0.463 0.472 0.760 0.343

Therefore, the parameter setting is the same with clustering
version on respective dataset.

Competitors: In semi-supervised learning task, we com-
pare the proposed method with six representative single-view
and multi-view semi-supervised classification algorithms: the
non-negative sparse hyper-laplacian regularized LRR model
(NSH-LRR) [9], the sparse multiple graph integration ap-
proach (SMGI) [32], the adaptive multi-model semi-supervised
classification method (AMMSS) [33], the multi-modal cur-
riculum learning for semi-supervised classification (MMCL)
[34], the parameter-free auto-weighted multiple graph learning
(AMGL) [35], the multi-view semi-supervised learning with
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TABLE X: Clustering results on Caltech-256. We set
λ1 = 0.04 and λ2 = 0.1 in proposed HLR-M2VS.

Method NMI ACC AR F-score Precision Recall

SPCINS
best 0.192 0.030 0.002 0.006 0.007 0.005

LRRINS
best 0.661 0.470 0.306 0.310 0.350 0.278

NSH-LRRINS
best 0.679 0.500 0.323 0.333 0.374 0.306

RMSC 0.507 0.322 0.181 0.159 0.197 0.129
DiMSC* \ \ \ \ \ \
MLAN 0.784 0.582 0.384 0.389 0.300 0.550
LTMSC 0.761 0.502 0.335 0.345 0.227 0.725
ECMSC 0.521 0.337 0.243 0.330 0.222 0.649
GSNMF-CNN 0.737 0.517 0.345 0.349 0.311 0.398
t-SVD-MSC 0.840 0.570 0.419 0.423 0.286 0.815
HLR-M2VS 0.885 0.616 0.441 0.460 0.323 0.849

*DiMSC runs out of memory in current platform
due to the calculation of Sylvester equation.

TABLE XI: Classification accuracy for Scene-15 dataset based
on various method under different percentages of labeled
samples.

Methods 10 20 30 40 50 60

NSH-LRR 0.639 0.684 0.697 0.717 0.724 0.722
SMGI 0.617 0.649 0.676 0.692 0.699 0.706
AMMSS 0.599 0.680 0.694 0.709 0.701 0.716
AMGL 0.678 0.712 0.750 0.761 0.770 0.778
MMCL 0.645 0.680 0.725 0.747 0.748 0.740
MLAN 0.600 0.659 0.671 0.677 0.702 0.739
Semi-HLR-M2VS 0.895 0.917 0.934 0.967 0.983 0.943

TABLE XII: Classification accuracy for MITIndoor-67 dataset
based on various method under different percentages of labeled
samples.

Methods 10 20 30 40 50 60

NSH-LRR 0.610 0.665 0.693 0.717 0.733 0.739
SMGI 0.530 0.577 0.623 0.638 0.660 0.684
AMMSS 0.572 0.632 0.662 0.686 0.699 0.703
AMGL 0.298 0.377 0.461 0.502 0.547 0.594
MMCL 0.524 0.539 0.569 0.580 0.595 0.605
MLAN 0.536 0.552 0.572 0.590 0.603 0.607
Semi-HLR-M2VS 0.534 0.693 0.798 0.843 0.922 0.871

adaptive neighbors (MLAN) [36]. The first method is the
single view hyper-Laplacian regularized baseline, while the
rest ones represent the state-of-the-art approaches in multi-
view semi-supervised learning.

The semi-supervised classification results are reported in
Table XI ∼ XIII and Fig. 5. We can see that the Semi-HLR-
M2VS method always achieves the best classification accuracy
except the case of 10 percentage labeled data on MITIndoor-
67 dataset. Numerically, on Scene-15, the proposed method
leads AMGL (the second best approach, the magenta curve
in Fig. 5 (a)) with the margins approximately at least 17%
and up to 22% for different labeled percentages. Similar
observation can be seen on the other two datasets. Comparing

with the single-view baseline, we can conclude that, merely
using single-view feature accompanying with hyper-Laplacian
regularization is not enough to handle the nonlinear subspace
segmentation, as it is done in NSH-LRR. Moreover, the
superiority to other state-of-the-art approaches means that the
multi-view consensus (global constraint) and view-specific
manifold regularization (local constraint) interact with each
other so as to facilitate the supervised information to propagate
to unlabeled data through the graph implicitly defined by the
fused hyper-Laplacian matrix (Eqn. (35)) more effectively.

TABLE XIII: Classification accuracy for Caltech-101 dataset
based on various method under different percentages of labeled
samples.

Methods 10 20 30 40 50 60

NSH-LRR 0.624 0.688 0.733 0.767 0.782 0.798
SMGI 0.495 0.538 0.550 0.576 0.601 0.599
AMMSS 0.360 0.441 0.489 0.514 0.543 0.562
AMGL 0.663 0.721 0.757 0.785 0.816 0.829
MMCL 0.596 0.649 0.677 0.705 0.718 0.729
MLAN 0.612 0.661 0.694 0.720 0.733 0.745
Semi-HLR-M2VS 0.724 0.825 0.851 0.876 0.898 0.904

D. Parametric Sensitivity

The weighting factors λ1 and λ2 are two tuning parameters
in the proposed HLR-M2VS model. The parameter λ1 > 0 is
used to denote the influence of the noise upon the dataset.
Commonly, the choice of λ1 relies on the error level of
the data, i.e., λ1 will be set to relatively large value when
relative large corruption appears in multiple features, and small
value would be preferred otherwise. The λ2 > 0 is utilized
to tradeoff the effects between the view-specific geometrical
regularization and the low rank constraint in unified self-
representation coefficient tensor space.

Through intensively parameters tuning, we empirically
found that λ1 and λ2 locate within the ranges [0.01, 0.2] and
[0.1, 0.9], respectively. Specifically, we are more interested
in how the variations of those two parameters influence the
algorithm output. To this end, the parameters λ1 and λ2

are changing from 0.01 to 0.2 and 0.1 to 0.9 with intervals
0.01 and 0.1, respectively, to see the produced accuracy and
normalized mutual information. The experimental results are
illustrated in Fig. 6, which shows the evaluation results on two
typical datasets, i.e., Notting-Hill and Scene-15.

Although the parameters λ1 and λ2 play an important role
on the performance, as illustrated in Fig. 6 (a) and (b), on
Notting-Hill dataset, all results are still better than its most
powerful competitor t-SVD-MSC, which indicates the partial
stability of the proposed model. As for Scene-15 dataset, not
all the outputs of the proposed method outperform the t-
SVD-MSC. However, it is noteworthy that the reported results
of t-SVD-MSC are obtained by carefully tuning. Since the
proposed model can further improve the result of t-SVD-MSC,
which obtained by its best parameter configuration, this can
demonstrate that the hyper-Laplacian regularization can be
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Fig. 5: Classification accuracy versus the labeled percentages on Scene-15, MITIndoor-67, and Caltech-101 datasets by using
different semi-supervised learning approaches.
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Fig. 6: Parameters tuning (λ1 and λ2) in terms of ACC and NMI on Notting-Hill and Scene15 datasets.

viewed as an efficient local geometrical complement to the
global tensor based low rank regularization.

It also can be learned from the above parametric analysis
that the relationship between the two critical regularizers, i.e.,
t-TNN part and hyper-Laplacian part, could be clearly under-
stood. The t-TNN part can be considered as the cornerstone
of the proposed method. This part acts as a global constraint
to ensure the consensus among multiple views to obtain a
refinement pairwise relationship among samples for all the
views. On the other hand, hyper-Laplacian part acts as an
auxiliary module to supplement to the t-TNN part, since the
model (Eqn. (14)) without hyper-graph part, i.e., t-SVD-MSC,
can not handle the data sampled from non-linear subspaces.
The contributions of the two parts can be judged from their
corresponding weights in objective function Eqn. (14), where
the weight λ2 represents the importance of the hyper-Laplacian
part in the proposed model, while the weight for t-TNN part is
always set to 1. According to the above parametric analysis, λ2

usually locates within the range [0.1, 0.9] (good performances
usually appear when λ2 < 0.5, see Fig. 6). Comparing the
weights of different parts, we can conclude that the t-TNN
part contributes more for the final result.

E. Computational Complexity and Convergence

The construction of {L(v)
h }Vv=1 and the optimization proce-

dures for Q and G are the three computation-intensive steps.
As for the hyper-Laplacian, it takes O(V N2 log(N)) for all
the views. As for the G subproblem, according to [22], it
will spend O(2N2V log(N) + N2V 2) ≈ O(2N2V log(N))
in each iteration, in which the former is the cost for FFT and
IFFT operations, the latter represents the cost of SVD for N

V ×N matrices. Since we keep the nearest neighbors to 5 for
constructing the hypergraph, solving the sparsified Laplacian
linear system for Q will take O(m logc(m)) for a constant
c [58], where m denotes the number of non-zero entries in
Laplacian matrix. By considering the number of iterations and
the cost of spectral clustering, for Algorithm 2, we have the
following computational complexity:

O(N3) +O(K(2N2V log(N))), (38)

where K is the number of iterations.
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Figure 7: Convergence plot on Scene-15 dataset.

Practically, the derived optimization method converges fast.
As it is shown in Fig. 7, the two error terms, namely the
reconstruction error (RE) and the match error (ME), are
defined according to the convergence conditions (see steps (11)
in Algorithm 2):

RE .
=

1

V

V∑
v=1

||I− Z(v) −P(v)||∞ (39)
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ME .
=

1

V

V∑
v=1

||Z(v) −G(v)||∞ (40)

Usually, the number of optimization iteration is between 20
and 40.

VII. CONCLUSIONS

In this paper, a hyper-Laplacian regularized multilinear self-
representation model is derived to conduct clustering and semi-
supervised classification by using multi-view heterogeneous
features. In the proposed model, all the subspace coefficients
will be alternatively optimized both in unified tensor space
and view-specific feature spaces. On the one hand, in unified
tensor space, the global consensus could be captured through
low-rank approximation of the rotated subspace coefficient
tensor by using t-SVD based tensor multi-rank minimization.
On the other hand, in view-specific feature spaces, the lo-
cal high-order geometrical structure will be discovered by
imposing the hyper-Laplacian regularization on view-specific
self-representation coefficient matrix. These two aspects can
be regarded as the global and local constraints to ensure
the consensus principle among multiple views and preserve
geometrical structure in each view, respectively. Furthermore,
the proposed model can be extended to semi-supervised clas-
sification without introducing any additional parameter. Exten-
sive evaluation is conducted on several challenging datasets,
in which a remarkable advance over state-of-the-art multi-
view clustering and multi-view semi-supervised classification
approaches is obtained.
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