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Speeding Up the Bilateral Filter:
A Joint Acceleration Way

Longquan Dai, Mengke Yuan, and Xiaopeng Zhang, Member, IEEE

Abstract— Computational complexity of the brute-force
implementation of the bilateral filter (BF) depends on its filter
kernel size. To achieve the constant-time BF whose complexity
is irrelevant to the kernel size, many techniques have been
proposed, such as 2D box filtering, dimension promotion, and
shiftability property. Although each of the above techniques
suffers from accuracy and efficiency problems, previous algo-
rithm designers were used to take only one of them to assemble
fast implementations due to the hardness of combining them
together. Hence, no joint exploitation of these techniques has
been proposed to construct a new cutting edge implementation
that solves these problems. Jointly employing five techniques:
kernel truncation, best N-term approximation as well as previous
2D box filtering, dimension promotion, and shiftability property,
we propose a unified framework to transform BF with arbitrary
spatial and range kernels into a set of 3D box filters that can
be computed in linear time. To the best of our knowledge,
our algorithm is the first method that can integrate all these
acceleration techniques and, therefore, can draw upon one
another’s strong point to overcome deficiencies. The strength of
our method has been corroborated by several carefully designed
experiments. In particular, the filtering accuracy is significantly
improved without sacrificing the efficiency at running time.

Index Terms— Fast bilateral filter, best N-term approximation,
haar functions, truncated trigonometric functions.

I. INTRODUCTION

THE bilateral filter (BF) is probably one of the most
fundamental tools in computer vision and graphics

applications [1]. The concept of BF was first introduced by
Aurich and Weule [2] under the name “nonlinear Gaussian
filter” in 1995, and then by Smith and Brady [3] within the so-
called “SUSAN” approach in 1997. Later, it was rediscovered
by Tomasi and Manduchi [4] with the current name “bilateral
filter” in 1998. The basic idea underlying bilateral filtering
is to do in the range domain of an image what traditional
spatial filters [5] do in its spatial domain, because BF considers
that two pixels which are close or visually similar to

Manuscript received August 4, 2015; revised December 8, 2015 and
February 8, 2016; accepted March 18, 2016. Date of publication April 1,
2016; date of current version April 26, 2016. This work was supported
and in part by the National Natural Science Foundation of China under
Grant 61331018, Grant 91338202, Grant 61572405, and Grant 61571046,
in part by the China National High-Tech R&D Program (863 Program) under
Grant 2015AA016402. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Debargha Mukherjee.
(Corresponding author: Xiaopeng Zhang.)

The authors are with the National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China (e-mail: longquan.dai@ia.ac.cn; mengke.yuan@nlpr.ia.ac.cn;
xiaopeng.zhang@ia.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2016.2549701

one another have the same perceptual meaning. Unlike tra-
ditional spatial filters, the weights of BF take into account
both spatial affinity and intensity similarity with respect to
the central pixel. Therefore BF can be used to preserve edges
while performing smoothing.

BF’s output at pixel x = (x, y) is a weighted average
of its neighbors Nx . The weights assigned to the pixels in
Nx are inversely proportional to both the distance in the
spatial domain S and the dissimilarity in the range domain R.
Let I be a gray-level image, Kr (x) and Ks(x) be decreasing
functions on the region R

+ and symmetric functions on the
entire definition domain R, BF is specified as follows:

Î (x) =
∑

y∈Nx
Ks(‖x − y‖)Kr (I (x)− I (y))I (y)

∑
y∈Nx

Ks(‖x − y‖)Kr (I (x)− I (y))
(1)

Although the Gaussian function Gσ (x) = exp(−x2/2σ 2) is a
common choice for the spatial and range kernels, the options
are not unique. More candidates can be found in [6].

As a simple, non-iterative and edge-preserving filtering tool,
BF has been found with a wide range of applications such
as stereo matching [7], flash and no-flash images fusion [8]
and contrast enhancement [9]. However, on the flip side of
the power, the complexity of its brute-force implementation
is O(|Nx ||I |), where |I | is the number of pixels of the
image I and |Nx | is the size of the neighborhood Nx . Since
O(|Nx ||I |) relies on the size of Nx , the run time increases
with the size of Nx . We thus have to spend several minutes
for final results when Nx is large. It is unacceptable for time-
critical applications, such as stereo matching [10] and video
abstraction [11].

Considering the importance of BF in practice, we will study
and retrofit the acceleration of BF to reduce its computa-
tional complexity from O(|Nx ||I |) down to O(|I |). A typical
acceleration approach is first to decompose

∑
y∈Nx

Ks(‖x −
y‖)Kr (I (x) − I (y))I (y) into a set of linear convolutions∑

y∈Nx
Ks(‖x − y‖)g(y) and then to speed up the linear

convolution, where g(x) is a scalar function. In the litera-
ture, a distinction was made between the two operations and
therefore different strategies are adopted to accelerate them.
Particularly, some fast implementations are limited to accel-
erate the specific Gaussian kernel. Unlike these approaches,
we propose a unified framework to complete the two tasks.
At first, we take advantage of the best N-term approximation
of Kr (x) on truncated trigonometric functions to transform∑

y∈Nx
Ks(‖x − y‖)Kr (I (x)− I (y))I (y) into a set of linear

convolution
∑

y∈Nx
Ks(‖x − y‖)g(y), then we exploit the

best N-term approximation of Ks(x) on 2D Haar functions
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to decompose
∑

y∈Nx
Ks(‖x − y‖)g(y) into a set of 3D box

filters. More importantly, we disclose that our implementation
cannot only be fast computed by the summed area table [12],
but also be used to speed up BF with arbitrary kernels.

Contributions of this paper are fourfold: 1), we propose
the truncated kernels which are exploited to replace BF’s
original kernels; 2), we use the best N-term approxima-
tion on Haar functions and truncated trigonometric functions
to approximate the truncated spatial and range kernels
respectively; 3), we find that the product of the two best
N-term approximations can be fast computed by 3D box
filters; 4), compared with other methods, our filtering accuracy
can be significantly improved without sacrificing efficiency.
In order to clarify our contribution, the rest of this paper
is structured as follows. First, existing fast bilateral filtering
algorithms are reviewed in section II. After that, section III
lists the background techniques. Sequentially, our proposed
method is described in section IV and a full comparison is
conducted with other acceleration techniques in section V.

II. RELATED WORK

Fast implementations of BF can be roughly divided into
two categories: the first one is the high-dimensional imple-
mentations [13]–[15], the second one is the low-dimensional
case. In this paper, we focus on the second one. For a
clear description of our method, we briefly introduce the low
dimensional acceleration algorithms in two aspects below.

A. Speeding Up the Linear Convolution of Ks(x)

Acceleration techniques of computing
∑

y∈Nx
Ks(‖x −

y‖)g(y) have been well studied in the literature. Here,
we roughly divided them into three classes: Fast Fourier
Transform, Kernel separation and Box filtering.

1) Fast Fourier Transform (FFT): Durand and Dorsey [6]
first employed FFT to fast compute

∑
y∈Nx

Ks(‖x − y‖)g(y)
as the linear convolution of Ks(x) can be greatly accelerated
using FFT. In mathematics, an O(|Nx ||I |) convolution with
arbitrary Ks(x) in the spatial domain becomes multiplication
in the frequency domain with O(|I |) complexity. Although
FFT can be used to produce accurate filtering, FFT and its
inverse have the cost O(|I | log(|I |)). But, in practice, an
algorithm with linear complexity O(|I |) is preferred.

2) Kernel Separation: Kernel separation based methods
decompose 2D filter kernel into two 1D kernels. Rows of
an image are filtered at first. After that, the intermediate
result is filtered along the columns [16]. Yang et al. [17]
advocated using Deriche’s recursive method [18] to approx-
imate Gaussian filtering. More methods can be found in [19].
Compared with FFT, this kind of algorithms is much faster,
but they do not perform well in texture regions.

3) Box Filtering: A 2D box filter B̈(x) is a spatial domain
linear filter in which each pixel x has a value equal to the
average of its neighboring pixels y ∈ Nx of the input image.
Due to the property of equal weights, box filters can be
implemented using the summed area table [12] which is sig-
nificantly faster than using a sliding window algorithm. Note
that box filters can be used to approximate the Gaussian filter.

In order to decompose the Gaussian spatial kernel into several
box functions, Zhang et al. [20] employed the de Moivre-
Laplace theorem, which says that for k in the neighborhood
of np, lim

n→∞
(n

k

)
pk(1 − p)n−k = 1√

2πnp(1−p)
exp(− (k−np)2

2np(1−p) ).

The method however is not problem-free because it can only
be applied to speed up the Gaussian filter. Gunturk [21]
generalized the Gaussian spatial kernel to arbitrary ker-
nels and employed the least squares optimization to find
the optimal coefficients βs

i that minimize the approxima-

tion error (Ks(‖x‖) − ∑Ms
i=1 β

s
i B̈N i

x
(x))2. Unlike Gunturk,

Pan et al. [22] formulated their objective function from the
sparsity perspective and exploited the efficient Batch-OMP
algorithm [23] to solve the optimal coefficients βs

i as well
as the window radius of N i

x .

B. Speeding Up the Nonlinear Convolution of Kr (x)

Unlike the spatial kernel Ks(x), the range kernel Kr (x)
introduces nonlinearity to BF as Kr (I (x) − I (y)) is signal-
dependent. A common idea shared by algorithm designers
to speed up

∑
y∈Nx

Ks(‖x − y‖)Kr (I (x) − I (y))I (y) is to
transform the nonlinear convolution of Kr (x) into a set of
linear convolutions of Ks(x). Roughly, there are three kinds
of acceleration techniques which are dimension promotion,
principle bilateral filtered image component and shiftability
property, respectively.

1) Dimension Promotion: This acceleration technique is
obtained through representing an image in 3D space by
adding the intensity to the spatial domain of an image as the
2D nonlinear convolution of Kr (x) becomes linear convolution
in 3D space which is easy to speed up. This idea is similar
to the well-known level set method [24] which considers that
the breaking and merging operations are hard to perform in
2D space, but they can be easily handled in higher dimensional
space.

Mathematically, let δz(x) be an impulse function at z and
F(y, z) = I (y)δI ( y)(z), BF in (1) can be transformed to

Î (x) =
∑

z Kr (I (x)− z)
∑

y∈Nx
Ks(‖x − y‖)F(y, z)

∑
z Kr (I (x)− z)

∑
y∈Nx

Ks(‖x − y‖) (2)

where z can be explained as the sample in the range domain.
For an 8-bit image, z ∈ [0, 255]. In (2), BF is decomposed in
the range domain, and the nonlinear relationship between I (y)
and I (x) in the range kernel is eliminated. Hence the response
of BF can be computed by first performing linear convolution
on the auxiliary image I (y)δI ( y)(z) for each fixed z and then
calculating the sum weighted by Kr (I (y)− z) along z.

Porikli [25] first employed this technique to speed up BF.
Sequentially, Zhang et al. [20] applied it to the joint bilateral
filtering. Incorporating with different spatial kernel accelera-
tion methods, Gunturk [21] and Pan et al. [22] designed two
different fast BF implementations. The biggest problem of
them is that they need to perform 255 times linear filtering
as well as 255 addition and multiplication operations along z
for each fixed y. This is not efficient.

2) Principle Bilateral Filtered Image Component (PBFIC):
This method was first proposed by Durand and Dorsey [6]
in 2002. Seven years later, Yang et al. [17] generalized this
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idea for fast bilateral filtering with arbitrary range kernels.
At first, Yang transforms BF (1) into (3) by letting I (x) =
z ∈ [0, 255] for 8-bit images

Î (x) =
∑

y∈Nx
Ks(‖x − y‖)Kr (z − I (y))I (y)

∑
y∈Nx

Ks(‖x − y‖)Kr (z − I (y))
(3)

then he defines PBFIC Îz(x) as

Îz(x) =
∑

y∈Nx
Ks(‖x − y‖)Jz(y)

∑
y∈Nx

Ks(‖x − y‖)Wz(y)
(4)

where Wz(y) = Kr (z − I (y)) and Jz(y) = Wz(y)I (y).
According to (3) (4), BF is decomposed into a set of linear
filter responses Îz(x). So that we have

Î (x) = ÎI (x)(x) (5)

Further, assuming only N out of 256 PBFICs are used
(z ∈ [L0, · · · , L N−1]), and the intensity I (x) ∈ [Lz, Lz+1],
the value of BF can be linearly interpolated as follows:

Î (x) = (Lz+1 − I (x)) Îz(x)+ (I (x)− Lz) Îz+1(x) (6)

PBFIC has also been used to design the bilateral grid data
structure [26], [27] for fast BF computation. However, the
approximation accuracy is usually very low because the linear
interpolation is introduced to approximate filtering results.
An et al. [28] provided a quantitative error analysis for it.

3) Shiftability Property: A range kernel Kr (x) is shiftable
if there exists N functions such that, for every translation τ ,
we have

Kr (x − τ ) =
N∑

i=1

ci (x)Ki (τ ) (7)

Based on this shiftability property, Chaudhury [29] pointed out
that BF with a shiftable range kernel Kr (x) can be computed
in linear complexity. This is because we have

∑

y∈Nx

Ks(‖x − y‖)Kr (I (x)− I (y))I (y)

=
N∑

i=1

ci (I (x))
∑

y∈Nx

Ks(‖x − y‖)Ki (I (y))I (y) (8)

which transforms the nonlinear convolution of the range
kernel Kr (x) into a set of linear convolutions of the spatial
kernel Ks(x) on the auxiliary image Ki (I (y))I (y). Hence,
employing different acceleration methods for Ks(x), we can
derive different fast implementations for BF under the shifta-
bility based acceleration framework.

As for the non-shiftable range kernel, we can exploit a set
of shiftable range kernels to approximate it. Following the
idea, Chaudhury et al. [30] took trigonometric functions to
approximate the Gaussian range kernel as illustrated in (9).

Gσ (I (x)− I (y)) ≈
N∑

n=0

2−N
(

N

n

)

cos(ωn I (x)) cos(ωn I (y))

+
N∑

n=0

2−N
(

N

n

)

sin(ωn I (x)) sin(ωn I (y)) (9)

where ωn = 2n−N√
Nσ

. Let Hn(x) be an Hermite polynomial with
order n, Dai et al. [31] employed Hn(x) to approximate the
Gaussian range kernel as illustrated in (10).

Gσ (I (x)− I (y)) ≈ e− I 2(x)
σ

N∑

n=0

Hn(
I (x)
σ

)
I n(y)

n!σ n
2

(10)

Compared with other range kernel acceleration methods,
the two methods are limited to the Gaussian kernel. Another
drawback shared by the two methods is reported by
Chaudhury [32] who complained that it is difficult to approxi-
mate the Gaussian range kernel using above expansions when
σ is small. In particular, a great deal of approximation terms
are required to get a good approximation of a narrow Gaussian
function. This will considerably increase the run time.

III. BACKGROUND TECHNIQUES

In this section, we will provide a brief introduction for the
necessary background knowledge required by our method.

A. Best N-Term Approximation

Given a set of orthogonal basis functions ϕk of a L2 space V
with the 2 norm ‖ · ‖2, a best N term approximation g	 to a
function f ∈ V minimizes

min
g	

‖ f − g	‖2

s.t. g	 =
∑

k∈	
ckϕk (11)

where 	 denotes the index set formed by N functions ϕk and
the space of g	, in which the approximation is sought, is the
nonlinear manifold consisting of all linear combinations of the
given bases with at most N terms.

Without solving optimization (11), the best N-term approx-
imation of the function f can be obtained by selecting the
first N largest coefficients, because the orthogonal projection
g	 of f on the space V	 spanned by ϕk, k ∈ 	 is

g	 =
∑

k∈	
〈 f, ϕk〉ϕk (12)

Hence, the approximation error can be rewritten as ‖ f −
g	‖2

2 = ∑
k 
∈	 |〈 f, ϕk〉|2 = ‖ f ‖2

2 − ∑
k∈	 |〈 f, ϕk〉|2 which

indicates our conclusion.
Selecting the N largest coefficients provides us a simple

way to find the best N-term approximation. In the following
sections, we use this strategy to find the best N-term approx-
imations of the range kernel Kr (x) and the spatial kernel
Ks(x) on 1D truncated trigonometric functions and 2D Haar
functions respectively.

B. Truncated Trigonometric Functions

Truncated trigonometric functions form the basis function
of the L2 space on the interval [−T, T ]. For arbitrary functions
f ∈ L2([−T, T ]), we have

f (x) = Ḃ(x)(
∞∑

j=0

a j cos(
π j

T
x)+

∞∑

j=1

b j sin(
π j

T
x)) (13)
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where Ḃ(x) denotes a 1D box function with the support
region [−T, T ] and

a0 = 1

2T

∫ T

−T
f (x)dx (14)

a j = 1

T

∫ T

−T
f (x) cos(

π j

T
x)dx (15)

b j = 1

T

∫ T

−T
f (x) sin(

π j

T
x)dx (16)

Above equations are the Fourier series which is constrained
on the interval [−T, T ]. (13) holds for the reason that Fourier
series can decompose a periodic function into the sum of a
(possibly infinite) set of simple oscillating functions, namely
sines and cosines. If we define f̂ as the periodic extension
of f and compute its Fourier periodic expansion, we always
have f (x) = f̂ (x) = ∑∞

j=0 a j cos(π j
T x)+ ∑∞

j=1 b j sin(π j
T x)

on the interval [−T, T ].

C. Haar Functions

Haar functions were proposed by Haar [33] in 1910 to give
an example of the orthonormal system of square-integrable
functions on the unit interval. In general, Haar functions are a
sequence of rescaled “square-shaped” functions. Specifically,
the Haar scaling function φ(x) is defined as

φ(x) =
{

1 −T ≤ x ≤ T

0 otherwise
(17)

and the Haar mother function ψ0,0(x) is described as

ψ0,0(x) =

⎧
⎪⎨

⎪⎩

1 −T ≤ x < 0

−1 0 ≤ x ≤ T

0 otherwise

(18)

Let K j = {−2 j−1, · · · ,−1, 1, · · · , 2 j−1} and j be
nonnegative integers. For an integer k ∈ K j , the Haar function
ψ j,k(x) is defined by the formula

ψ j,k(x) = ψ0,0(2 j x − sign(k)(2|k| − 1)T ) (19)

So, for example, Fig. 1 illustrates φ(x) as well as the first few
values of ψ j,k(x), where

ψ1,−1(x) = ψ0,0(2x + T ) ψ1,1(x) = ψ0,0(2x − T )

ψ2,−1(x) = ψ0,0(4x + T ) ψ2,1(x) = ψ0,0(4x − T )

ψ2,−2(x) = ψ0,0(4x + 3T ) ψ2,2(x) = ψ0,0(4x − 3T )

All these functions are called Haar functions and form an
orthogonal basis of L2([−T, T ]). Then arbitrary functions
f (x) ∈ L2([−T, T ]) can be written as a series expansion by

f (x) = c0φ(x)+
∞∑

j=0

∑

k∈K j

c j kψ j,k(x) (20)

where c0 =
∫ T
−T f (x)φ(x)dx

2T and c jk = 2 j
∫ T
−T f (x)ψ j,k(x)dx

2T .
2D Haar functions are a natural extension from

the single dimension case. For any orthogonal basis
ϕk ∈ L2([−T, T ]), one can associate a separable orthogonal

Fig. 1. A visual illustration of the Haar functions φ(x), ψ0,0(x),
ψ1,−1(x), ψ1,1(x), ψ2,−2(x), ψ2,−1(x), ψ2,1(x) and ψ2,2(x), where T = 2.
(a) φ(x). (b) ψ0,0(x). (c) ψ1,−1(x). (d) ψ1,1(x). (e) ψ2,−2(x). (f) ψ2,−1(x).
(g) ψ2,1(x). (h) ψ2,2(x).

basis ϕk1(x)ϕk2(y) of L2([−T, T ] × [−T, T ]). Following
the strategy, we define 2D Haar functions as the set of
{φ(x)φ(y), φ(x)ψ j2,k2 (y), ψ j1,k1(x)φ(y), ψ j1,k1(x)ψ j2,k2 (y)}.
Then for arbitrary functions f (x) ∈ L2([−T, T ] × [−T, T ]),
we have

f (x) = c0φ(x)φ(y)

+
∞∑

j2=0

∑

k2∈K j2

c0, j2,k2φ(x)ψ j2,k2(y)

+
∞∑

j1=0

∑

k1∈K j1

c j1,k1,0ψ j1,k1 (x)φ(y)

+
∞∑

j1=0

∑

k1∈K j1

∞∑

j2=0

∑

k2∈K j2

c j1,k1, j2,k2ψ j1,k1 (x)ψ j2,k2 (y)

(21)

where x = (x, y) and

c0 = 1

4T 2

∫ T

−T

∫ T

−T
f (x, y)φ(x)φ(y)dxdy

c0, j2,k2 = 2 j2

4T 2

∫ T

−T

∫ T

−T
f (x, y)φ(x)ψ j2,k2 (y)dxdy

c j1,k1,0 = 2 j1

4T 2

∫ T

−T

∫ T

−T
f (x, y)ψ j1,k1 (x)φ(y)dxdy

c j1,k1, j2,k2 = 2 j12 j2

4T 2

∫ T

−T

∫ T

−T
f (x, y)ψ j1,k1(x)ψ j2,k2(y)dxdy.

(22)

D. The Summed Area Table (SAT)

As a data structure for quickly and efficiently generating
the sum of values in a rectangular subset of a grid, the
2D SAT was first introduced to computer graphics society in
1984 by Crow [12] for texture mapping, but was not properly
introduced to the world of computer vision till 2004 by
Viola and Jones [34] with their landmark face detection
algorithm to fast compute the sum of image values I (x ′, y ′)
on a given rectangle R = (x0, x1] × (y0, y1].

S(R) =
∑

x0<x ′≤x1

∑

y0<y′≤y1

I (x ′, y ′) (23)
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The complexity of (23) is proportional to the size of the
rectangle R. Viola and Jones employ the SAT S(x, y) in (24)
to compute arbitrary S in constant time.

S(x, y) =
∑

0≤x ′≤x

∑

0≤y′≤y

I (x ′, y ′) (24)

First, SAT can be calculated in one pass over the image I
by putting c(x,−1) = S(−1, y) = 0 and using the recur-
rence (25)

c(x, y) = c(x, y − 1)+ I (x, y)

S(x, y) = S(x − 1, y)+ c(x, y) (25)

After that, S(R) can be computed in linear complexity over
the image I according to

S(R) = S(x1, y1)− S(x1, y0)− S(x0, y1)+ S(x0, y0) (26)

which only contains four references to S(x, y).
A special case of the 2D SAT is the 1D SAT defined

by S(x) = ∑
0≤x ′≤x I (x ′). We can computed it in one pass

according to S(x) = S(x − 1)+ I (x). The sum S((x0, x1]) on
the interval (x0, x1] thus equals to

S((x0, x1]) = S(x1)− S(x0) (27)

The 2D SAT can also be extended to the high-dimensional
case to compute the sum of values in a N-D cube. In the
literature, Ke et al. [35] considered the image sequences
as 3D images and defined the integral video (i.e. the 3D
SAT) to compute volumetric features from the optical flow
of videos for the motion and activity detection. Six years
later, Tapia [36] provided a generalized procedure to compute
the sum of values in a N dimensional cube using the
N-D SAT. Here, instead of directly computing the 3D SAT,
we jointly employ the 1D SAT and the 2D SAT to compute
the sum S(C) = ∑

x0<x ′≤x1

∑
y0<y′≤y1

∑
z0<z′≤z1

I (x ′, y ′, z′)
of a 3D image I (x ′, y ′, z′) on a given cube
C = (x0, x1] × (y0, y1] × (z0, z1]. This is because we
have

Ī (x, y, z) =
∑

x0<x ′≤x1

∑

y0<y′≤y1

I (x ′, y ′, z) (28)

S(C) =
∑

z0<z′≤z1

Ī (x, y, z′) (29)

and for each given z, we can employ the 2D SAT in (26) to
fast compute Ī (x, y, z). Similarly, (29) can be fast calculated
by the 1D SAT in (27).

IV. PROPOSED METHOD

In order to decompose BF into a set of 3D box filters while
keeping high accuracy, our method employs Haar functions
and truncated trigonometric functions to compute the best
N-term approximation of the truncated spatial and range
kernels. Further analysis discloses that our approximation can
be computed by the 3D SAT with complexity O(|I |).

A. Truncated Spatial Kernel K T
s (x) and

Range Kernel K T
r (x)

Since Ks(x) and Kr (x) are symmetric on the region R and
decrease their values on the region R

+, a point x with large
values Ks(x) or Kr (x) usually locates at a small region around
the original point. For instance, the Gaussian kernel Gσ (x)
falls off very fast, and almost vanishes outside the interval
[−3σ, 3σ ]. Hence, we can simply discard the points outside
[−3σ, 3σ ] without introducing significant errors. It is thus
reasonable to substitute Ks(x) and Kr (x) with the truncated
kernels K T

s (x) and K T
r (x) (refer to sections V-A and V-B).

Here K T
s (x) and K T

r (x) equal to Ks(x) and Kr (x) on
the intervals [−Ts, Ts ] and [−Tr , Tr ] respectively, otherwise
K T

s (x) = K T
r (x) = 0, where Ts = K −1

s (ε), Tr = K −1
r (ε),

and ε is a predefined value. In practice, 0.01 is a reasonable
value.

Note that the truncation operation for K T
s (x), K T

r (x) does
not increase the run time of BF because we can precompute
the truncated regions [−Ts, Ts] or [−Tr , Tr ]. In the sequent
sections, we will describe the methods to approximate the
truncated kernels.

B. Approximation for the Linear Convolution of Ks(x)

In computer vision and computer graphics [12], [37], [38],
the box filter has been used to accelerate many computation-
intensive applications as it has the advantage of being fast to
compute, but its adoption has been hampered by the fact that it
presents serious restrictions to filter construction. To solve the
problem, we employ 2D Haar functions to transform arbitrary
spatial kernels to a set of box functions.

As the truncated substitution K T
s (‖x‖) of Ks(‖x‖) is a

2D function, we can employ (21) to decompose it into a set of
2D Haar functions which are defined on the region [−Ts, Ts]×
[−Ts, Ts ]. After that, we select the first N largest coefficients
from the set {c0} ⋃{c0, j2,k2 }

⋃{c j1,k1,0}
⋃{c j1,k1, j2,k2 }. Let	s

1,
	s

2, 	s
3 and 	s

4 denote the selected coefficients from sets
{c0}, {c0, j2,k2 }, {c j1,k1,0}, {c j1,k1, j2,k2 }, so we have

Ks(‖x‖) ≈
➀

K T
s (‖x‖) ≈

➁

∑

c0∈	s
1

c0φ(x)φ(y)

+
∑

c0, j2,k2 ∈	s
2

c0, j2,k2φ(x)ψ j2,k2(y)

+
∑

c j1,k1 ,0∈	s
3

c j1,k1,0ψ j1,k1 (x)φ(y)

+
∑

c j1,k1 , j2,k2 ∈	s
4

c j1,k1, j2,k2ψ j1,k1(x)ψ j2,k2 (y) (30)

The equation can be simplified further as the basis functions
{φ(x)φ(y), φ(x)ψ j2,k2 (y), ψ j1,k1(x)φ(y), ψ j1,k1(x)ψ j2,k2 (y)}
can be effectively represented by 2D box functions. Fig. 2
provides us a visual illustration of four 2D Haar functions
φ(x)φ(y), φ(x)ψ0,0(y), ψ0,0(x)φ(y), ψ0,0(x)ψ0,0(y)
which stand for the four sets {φ(x)φ(y)}, {φ(x)ψ j2,k2 (y)},
{ψ j1,k1 (x)φ(y)}, {ψ j1,k1 (x)ψ j2,k2(y)} respectively. From
the figure, we can verify that φ(x)φ(y) is a 2D box
filter with the support region [−Ts, Ts ] × [−Ts, Ts ], and
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Fig. 2. A visual illustration of 2D Haar functions φ(x)φ(y), φ(x)ψ0,0(y),
ψ0,0(x)φ(y) and ψ0,0(x)ψ0,0(y), where T = 2, the red, gray and blue planes
denote the values of 1, 0 and −1, respectively. (a) φ(x)φ(y). (b) φ(x)ψ0,0(y).
(c) ψ0,0(x)φ(y). (d) ψ0,0(x)ψ0,0(y).

φ(x)ψ0,0(y) can be represented by two 2D box filters
located at [−Ts, Ts] × [−Ts, 0] and [−Ts, Ts ] × [0, Ts ].
Similarly, ψ0,0(x)φ(y) can be reformulated as two 2D
box filters and ψ0,0(x)ψ0,0(y) is equal to four 2D box
filters. In appendix A, we prove that the conclusion can
be generalized to the set {φ(x)φ(y)}, {φ(x)ψ j2,k2(y)},
{ψ j1,k1 (x)φ(y)}, {ψ j1,k1(x)ψ j2,k2(y)}. Hence Ks(‖x‖) can be
represented by a set of 2D box filters B̈ j (x):

Ks(‖x‖) ≈
➂

∑

c j ∈	s

c j B̈ j (x) (31)

where c j denotes coefficient of B̈ j (x), and 	s stands for the
collection of c j . Further, putting N j

x as the support region
of B̈ j (x), we can reformulate the convolution of Ks(x) as

∑

y∈Nx

Ks(‖x − y‖)g(y) ≈
∑

c j ∈	s

c j B̈ j (x − y)g(y)

=
➃

∑

c j ∈	s

c j

∑

y∈N j
x

g(y) (32)

As is known to us, the 2D SAT can be used to compute the
box filters in (32) in constant time by using (26).

C. Approximation for the Nonlinear Convolution of Kr (x)

In this section, we employ the best N-term approximation
on 1D truncated trigonometric functions to approximate the
truncated range kernel K T

r (x). Let 	r represent the selected
coefficients from the sets {ak} with k > 0, we have

Kr (x) ≈
➄

K T
r (x) ≈

➅

∑

ak∈	r

ak cos(
πk

Tr
x)Ḃ(x) (33)

Note that bk = 0 for K T
r (x) due to the symmetry

of K T
r (x). Employing cosine functions’s shiftability property,

we have
∑

y∈Nx

Ks(‖x − y‖)Kr (I (x)− I (y))I (y)

≈
➆

gc
k(x)

∑

ak∈	r

∑

y∈Nx

ak Ks(‖x − y‖)Ḃ(I (x)− I (y))Gc
k(y)

+ gs
k(x)

∑

ak∈	r

∑

y∈Nx

ak Ks(‖x − y‖)Ḃ(I (x)− I (y))Gs
k(y)

(34)

where Gc
k(y) = gc

k(y)I (y), Gs
k(y) = gs

k(y)I (y), gc
k(x) =

cos(πk
Tr

I (x)) and gs
k(x) = sin(πk

Tr
I (x)). The computational

complexity of (34) depends on the size of Nx . This depen-
dency can be eliminated by the dimension promotion tech-
nique. Let NI (x) denote the interval [I (x) − Tr , I (x) + Tr ],
Fc(y, z) = Gc

k(y)δI ( y)(z), Fs(y, z) = Gs
k(y)δI ( y)(z), we

reformulate (34) as
∑

y∈Nx

Ks(‖x − y‖)Kr (I (x)− I (y))I (y)

≈
➇

gc
k(x)

∑

ak∈	r

ak

∑

z∈NI (x)

∑

y∈Nx

Ks(‖x − y‖)Fc(y, z)

+ gs
k(x)

∑

ak∈	r

ak

∑

z∈NI (x)

∑

y∈Nx

Ks(‖x − y‖)Fs(y, z) (35)

which only involves the linear convolution of Ks(x).

D. 3D Box Filter Based Approximation for BF

Now we are able to decompose the nonlinear convolution
of Kr (x) into a set of linear convolutions of Ks(x) (35) as
well as to fast compute the linear convolution of Ks(x) (32).
Putting (32) into (35), we can further transform the convo-
lution f (x) = ∑

y∈Nx
Ks(‖x − y‖)Kr (I (x)− I (y))I (y) the

numerator of BF to

f (x) ≈
➈

gc
k(x)

∑

ak∈	r

∑

c j ∈	s

akc j

∑

z∈NI (x)

∑

y∈N j
x

Fc(y, z)

+ gs
k(x)

∑

ak∈	r

∑

c j ∈	s

akc j

∑

z∈NI (x)

∑

y∈N j
x

Fs(y, z) (36)

∑
z∈NI (x)

∑
y∈N j

x
Fc(y, z) and

∑
z∈NI (x)

∑
y∈N j

x
Fs(y, z)

can be interpreted as the sum of Fc(y, z) and Fs(y, z) in

the cube N j
x × NI (x). Hence, (36) denotes a linear com-

bination of 3D box filters that performed on the auxiliary
images Fc(y, z), Fs(y, z). So, using (28) (29) to compute
3D box filtering results, we can reduce the complexity of∑

y∈Nx
Ks(‖x − y‖)Kr (I (x) − I (y))I (y) down to O(|I |).

In addition, similar discussion can be applied to BF’s denom-
inator

∑
y∈Nx

Ks(‖x − y‖)Kr (I (x) − I (y)). Therefore, the

filtering result Î (x) of BF in (1) can be figured out with linear
complexity O(|I |).

Finally, we plot Fig 3 to outline the flowchart of our
algorithm as well as the acceleration techniques exploited in
each step as math symbols stated above may have overshad-
owed the underlying ideas. Generally speaking, our accel-
eration algorithm can be divided into two parts (i.e. the
linear/nonlinear convolution acceleration steps) which employ
following speeding up techniques:
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Fig. 3. A compressive illustration for the flowchart of our two steps acceleration algorithm as well as the acceleration techniques used in each step. Through
the nonlinear convolution acceleration step containing five techniques and the linear convolution acceleration step assembled by four techniques, our algorithm
successfully reduces the computational complexity from O(|Nx ||I |) to O(|I |).

➀ Truncated spatial kernel K T
s (x).

➁ Best N-term approximation for K T
s (x) on Haar

functions.
➂ Box filter representation for Haar functions.
➃ 2D SAT (2D box filtering).
➄ Truncated range kernel K T

r (x).
➅ Best N-term approximation for K T

r (x) on truncated
trigonometric functions

➆ The shiftability property of cosine functions.
➇ Dimension promotion.
➈ 3D SAT (3D box filtering).
Specifically, in the linear convolution acceleration step for

the spatial kernel, Eq (30) takes the truncated spatial kernel
K T

s (x) and best N-term approximation for K T
s (x) on Haar

functions to approximate original spatial kernel Ks(x) in
steps ➀ ➁, respectively. Moreover, step ➂ in (31) holds
due to the reason that Haar functions can be represented
by the linear combination of box filters as Fig 2 indicated.
Finally, applying 2D SAT to step ➃, we can figure out (32)
in linear computational complexity. Next, we accelerate the
nonlinear convolution of the range kernel. Similar to the
linear convolution acceleration step, Eq (33) of the nonlinear
convolution acceleration step adopts the truncated range kernel
K T

r (x) and best N-term approximation for K T
r (x) on trigono-

metric functions to approximate original range kernel Kr (x) in
steps ➄ ➅, respectively. Sequentially, the shiftability property
of cosine functions is exploited by step ➆ to eliminate the
nonlinearity in the trigonometric best N-term approximation
for K T

r (x). In addition, the nonlinearity in the box Ḃ(I (x)−
I (y)) is removed by the dimension promotion technique used
by step ➇ in (35). At last, putting (32) into (35) and employing
3D SAT, we can compute step ➈ in (36) in linear time.

V. COMPARISON WITH PREVIOUS METHODS

Based on best N-term approximation, we employ 2D Haar
functions and 1D truncated trigonometric functions to speed
up the convolution of Ks(x) and Kr (x), and we put the two
acceleration techniques together to compose our 3D box filter
based acceleration method. In this section, we provide some
results on synthetic and natural data as well as a detailed
analysis to understand the improvements of our proposal and
the differences between our approach and existing methods.

A. Comparison With the Acceleration Techniques of Ks(x)

Although FFT [6] can fast compute
∑

y∈Nx
Ks(‖x −

y‖)g(y), its complexity is not linear. Kernel separation based

TABLE I

THE TIME OF COMPUTING THE COEFFICIENTS AND SUPPORT REGIONS
OF BOX FILTERS, WHERE THE NUMBER OF USED BOX FILTERS

IS 3. NOTE THAT ALTHOUGH THE METHOD OF ZHANG IS

COMPARABLE WITH OURS, THIS METHOD CAN

ONLY ACCELERATE THE GAUSSIAN FUNCTION

methods [19] can complete the task in linear complexity.
However, they are limited to the Gaussian function. Even
worse, the approximation error will significantly degrade the
smoothing quality of texture regions. To the best of our
knowledge, the 2D box filtering based algorithms are the first
kind of techniques that can reduce the complexity O(|Nx ||I |)
of the linear convolution of arbitrary Ks(x) down to O(|I |).
Our Haar based fast computation method (32) also belongs
to this kind of techniques. In this section, we will highlight
the improvements and advantages of our approach, compared
with other methods.

1) Coefficients and Support Regions: Employing the lin-
ear combination

∑Ms
i=1

∑
y β

s
i B̈i (x − y)g(y) of box fil-

ters to approximate
∑

y∈Nx
Ks(‖x − y‖)g(y) is the key

idea of box filtering based algorithms. In the acceleration
literature [20]–[22], the optimization approach is utilized
to determine the coefficients and support regions of box
functions B̈i (x). Compared with previous algorithms, the
procedure of our method to determine the two parameters
is much simpler. This is because we choose the first N
largest coefficients of Haar functions (i.e. the best N-term
approximation on Haar functions). Meanwhile, the support
regions of box functions are predefined by Haar functions
{φ(x), ψ j,k(x)} with the size of Ts

2 j−1 , where j ∈ {0, . . . ,∞}.
Table I plots the run time of four methods used to determine
the coefficients and support regions of box filters. It can be
seen that our method spends the least time for acquiring these
parameters.

2) The Computational Complexity Equivalence Between the
Linear Combinations of Haar Functions and Box Filters:
To approximate the spatial kernel Ks(‖x − y‖) centered at
pixel x, all previous methods assume B̈i (x − y) must be
centered at the given pixel x too. Our Haar functions based
method breaks this assumption and jointly uses a set of box
functions deviated from the pixel x as well as the box functions
centered at x to approximate the kernel Ks(‖x − y‖). The
major advantage of our approach is that it reuses box filtering
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Fig. 4. Visual illustration for the linear combinations on the 2D basis
functions φ(x)φ(y), φ(x)ψ1,k2 (y), ψ1,k1 (x)φ(y), ψ1,k1 (x)ψ1,k2 (y). Here,
we denote the four linear combinations as f1(x, y), f2(x, y), f3(x, y),
f4(x, y), respectively, and different color implies different basis functions
exploited in the linear combinations. (a) f1(x, y). (b) f2(x, y). (c) f3(x, y).
(d) f4(x, y).

results and therefore can employ fewer box filters to obtain
more accurate approximation results. For instance, although
ψ j1,k1(x)ψ j2,k2 (y) is consisted of four box functions (or four
2D box filters), the size of the support regions of these
box functions is same to 2− j1+1Ts × 2− j2+1Ts . This can be
demonstrated in Fig 2 which implies that for the convolution
kernel ψ j1,k1(x)ψ j2,k2(y), the filtering result of x is a linear
composition of the box filtering result of four pixels around
pixel x. Hence, the computational complexity of the convolu-
tion with the kernel ψ j1,k1(x)ψ j2,k2(y) is same to the compu-
tational complexity of the box filter with the support region
2− j1+1Ts × 2− j2+1Ts . Similar discussion can also be applied
to the basis functions φ(x)φ(y), φ(x)ψ j2,k2(y), ψ j1,k1(x)φ(y)
according to the discussion in section IV-B.

Employing box filters, we can synthesis the linear combina-
tions of 2D Haar functions. For instance, Fig 4 demonstrates
four 2D Haar functions’ linear combinations f1(x, y) =
c0φ(x)φ(y), f2(x, y) = ∑

k2∈K c0,1,k2φ(x)ψ1,k2(y),

f3(x, y) = ∑
k1∈K c1,k1,0ψ1,k1(x)φ(y) and f4(x, y) =∑

k1,k2∈K c1,k1,1,k2ψ1,k1(x)ψ1,k2(y), where K = {−1, 1}.
The coefficients c0, c0,1,k2 , c1,k1,0, c1,k1,1,k2 are computed
from (22) based on the Gaussian function G1(x) as
illustrated in Fig 5. From Fig 4, we can find that each
linear combination can be decomposed into several box
functions with the same support regions. This conclusion
can be generalized further. According to appendix A, we
could reasonably conclude that given j1, j2, the linear
combinations of φ(x)φ(y), φ(x)ψ j2,k2 (y), ψ j1,k1(x)φ(y),
ψ j1,k1(x)ψ j2,k2 (y) can be synthesized from four box filters
with support regions 2Ts×2Ts , 2Ts×2− j2+1Ts , 2− j1+1Ts×2Ts ,
2− j1+1Ts × 2− j2+1Ts , respectively. So it is rational to equally
treat the four linear combinations of Haar functions and
the four box filters from the computational complexity
perspective. Moreover, the computational complexity of the
linear combinations f1(x, y) + f2(x, y) + f3(x, y) equals
to three box filters. In the next section, we will take it to
approximate the spatial Gaussian kernel function.

TABLE II

ACCURACY COMPARISON FOR BOX FILTER BASED ACCELERATION
METHODS, WHERE THE APPROXIMATION ERROR

(OR ACCURACY ERROR) IS MEASURED BY SSIM
AND PSNR AND N DENOTES THE

NUMBER OF BOX FILTERS

3) Approximation Comparison: Fig 5 shows the Gaussian
approximation result of our method as well as box filters
based approximations such as Zhang et al. [20], Gunturk [21],
Pan et al. [22]. To approximate the Gaussian function, we
use five Haar functions illustrated in Figs 4a-4c whereas
Zhang et al. [20], Gunturk [21], Pan et al. [22] take three
box filters. Unlike the box filters based methods [20]–[22]
employing three box filters to approximate the Gaussian
function, our method adopts the linear combination f1(x, y)+
f2(x, y)+ f3(x, y) which contains five Haar functions to fulfill
the same task. Note that the linear combination of five Haar
functions can be synthesized by three box filters and therefore
the complexity of them are the same. From Fig 5a-5c, we
can observe that Zhang, Gunturk and Pan simply take three
cubes and cascade them together to approximate the Gaussian
function. In contrast, our approximation in Fig 5d is different
from theirs. The approximation surface is more complicated
than them and the approximation error is the smallest. Table II
illustrates the relationship between the approximation quality
and the computational complexity. We choose the structural
similarity (SSIM) and Peak signal-to-noise ratio (PSNR) to
evaluate the approximation error. In addition, the number N
of box filters denotes the computational complexity. Note that
it is rational to use the number of box filters to indicate the
computational complexity because for fixed j1, j2, the filtering
result of the linear combination of Haar functions is a linear
combination of the values of box filtering result at different
points. Table II clearly indicates that our approximation error
is the smallest among the four methods and the decay rate of
our approximation is the fastest with respect to the number of
approximation terms.

Other than box filter based acceleration methods, we also
compare our approach with other spatial kernel acceleration
algorithms such as Deriche [18] which belongs to the kernel
separation method. However, this kind of methods cannot
perform satisfactorily on texture regions. We can observe these
artifacts produced by the kernel separation method in Fig 6.

B. Comparison With the Acceleration Techniques of Kr (x)

Decomposing the nonlinear convolution of Kr (x) into a set
of linear convolutions is the key step to speed up BF. In this
section, we compare our acceleration approach with previous
techniques. Without loss of generality, we assume Ks(‖x‖) is
a 2D box function in the following paragraphs.
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Fig. 5. Visual comparison of four different box filter approximations for the Gaussian function G1(x), where the first row shows the Gaussian function G1(x)
and the four methods’ approximations. In order to disclose the difference of the four approximations more clearly, the second row illustrates the density map
plots of the four approximations. Note that Zhang et al. [20], Gunturk [21] and Pan et al. [22] cascade three box filters together, our method compute the
linear combination f1(x, y)+ f2(x, y)+ f3(x, y) which can be synthesized by three box filters. (a) Zhang et al. [20]. (b) Gunturk [21]. (c) Pan et al. [22].
(d) Ours.

Fig. 6. Comparisons of smoothing result in texture regions. (a) is the
input image. (b) is the smoothing result produced by the kernel separation
method [18]. (c) is the smoothing result of ours. We can observe that the
kernel separation method tends to over smooth the image along the vertical
and horizontal edges due to 1D handling of spatial domain.

1) Dimension Promotion: Both our method and the dimen-
sion promotion based algorithm employ the dimension
promotion technique to eliminate the dependency between
I (y) and I (x) in the kernel Kr (I (x)− I (y)) and Ḃ(I (x)−
I (y)) according to (2) (28) (29) (36). Here Ḃ(x) is a box
function with the support region [−Tr , Tr ]. The response of
BF can be computed by first performing box filtering on
the auxiliary images F(y, z) (or Fc(y, z), Fs(y, z)) for each
fixed z and then calculating the sum weighted by Kr (I (y)−z)
(or Ḃ(I (y) − z)) along z.

TABLE III

COMPUTATIONAL COMPLEXITY AND ACCURACY FOR COMPARISON
BETWEEN THE DIMENSION PROMOTION BASED METHOD

(PORIKLI) IN [25] AND OUR METHOD

The major difference between the dimension promotion
based algorithms and ours is the computational complexity of
the second step as all these methods perform box filtering at
the first step. Specifically, let g(z) be a scalar function. For an
8-bit image,

∑255
z=0 Kr (I (x)−z)g(z) needs 256 multiplications

and 255 additions. In contrast, employing the 1D SAT along
the z axis, we only require 255 additions and 1 subtraction
to compute

∑255
z=0 Ḃ(I (x) − z)g(z) = ∑

z∈NI (x)
g(z). Note

that the floating point addition or subtraction requires 6 clock
cycles, multiplication or division require 30-44 clock cycles
on the Intel x86 processor. Due to the high running cost for
multiplication operation, our method can significantly decrease
the run time. Indeed, we can cut down the cost further
because for each fixed x, we only need to compute the box
filtering result at I (x) along the z axis. Hence in this situation
the 1D SAT degrade to the sliding window summation and
therefore we can reduce the running cost to 2Tr additions.

Our approach is not problem-free. The biggest shortcoming
is that our method can only give an approximation filtering
result. Fortunately, the approximation error is very small and
the accuracy will be improved when we take more terms to
approximate the range kernel Kr (x). In Table III, we list the
overall computational cost of filtering an image I as well as the
SSIM and PSNR indices that measure the similarity between
the filtering image and the ground truth, where |I | represents
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Fig. 7. Visual and quantitative approximation comparison for the Gaussian range kernel G10(x). (a) illustrates the approximation error measured by SSIM,
where x-axis denotes the bandwidth parameter σr of the Gaussian range kernel, y-axis stands for the number N of approximation terms and z-axis presents
the value of SSIM. From (b) to (c), the first row shows the approximation curves of Dai et al. [31], Chaudhury et al. [30], Chaudhury [32] and ours with
5 approximation terms for the Gaussian kernel. In the second rows, we keep the SSIM indices of the four methods as 0.99 to find the smallest approximation
number N of each method. The number N of Dai et al. [31], Chaudhury et al. [30], Chaudhury [32] and ours are 1700, 81, 42 and 5 respectively.

TABLE IV

TECHNIQUE SUMMARY FOR BF ACCELERATING METHODS

the pixel number of the image I . Note that the multiplications
in our method are caused by the multiplication of ak in (35)
and Table III does not take into account the complexity of
linear convolution of Ks(x) because both our approach and
the dimension promotion based algorithm perform 255 linear
convolutions. Compared with the dimension promotion based
algorithm, the number of multiplications is very small and thus
can be neglected. The approximation error almost vanishes
when we use three approximation terms. We can verify this
from the SSIM and PSNR indices and the approximation error
map shown in Fig 7. More importantly, the run time is still
smaller than the dimension promotion based algorithm.

2) Principle Bilateral Filtered Image Component (PBFIC):
This kind of methods is equivalent to the dimension promotion
based methods if we compute 256 PBFICs as they do not
need to interpolate missing values in this situation. Hence
it is reasonable to say that these methods speed up BF
by employing downsampling and interpolation operation to
reduce the computational burden. The major shortcoming is
the large approximation error and it is the origin of stepwise
artifacts which degrade the quality of filtering results for HDR
image intensively as illustrated in Fig 8. In contrast, our
method does not suffer from the problem.

3) Shiftability Property: Chaudhury et al. [30] first
employed the shiftability property of trigonometric functions
to accelerate BF. Using Hermite polynomials, Dai et al. [31]
gave another application instance of the shiftability prop-
erty. Unfortunately, the two methods can only deal with the
Gaussian kernel. Even worse, they require a large number
of terms to closely approximate a narrow Gaussian on the
interval [−255, 255] as illustrated in Fig 7. In [32], Chaudhury
adopted two measures to solve these problems: 1, shrinking

the approximation interval; 2, dropping off the terms with
small coefficients in the approximation series. But, his method
inevitably increases the running time because shrinking oper-
ation happens at filtering. Dropping off small terms is because
some ci in (8) are extremely small. Hence it is safe to get rid of
them to decrease the computational cost without introducing
significant errors. The advantage does not come at no cost as
the nonnegative assumption of the approximation is broken as
Fig 7d shown.

We inherit the idea of Chaudhury [32], but take a different
implementation. To decrease the size of approximation inter-
val, we find that the larger values of Kr (x) almost concentrate
on a small interval [−Tr , Tr ]. We introduce the truncated
trigonometric function to approximate Kr (x) on the precom-
puted interval [−Tr , Tr ]. As for other values, we can simply set
them as zeros. To verify the performance of our modifications,
we plot Fig 7a to show the approximation error measured by
the SSIM index with respect to the number N of approxima-
tion terms and the parameter σr of the Gaussian range kernel.
From the figure, we can observe that the approximation error
of our approach is almost the smallest on a wide range. Com-
pared with other shiftability property based methods [30]–[32],
the number N of approximation terms is nearly irrelevant
to σr . In contrast, the number of the approximation terms
of [30]–[32] are inversely proportional to σr . This is because
they need many terms to approximate the long tail of the nar-
row Gaussian function as shown in Figs. 7b-7d. (The first row
shows the approximation results with 5 terms. In the second
row, Dai et al. [31], Chaudhury et al. [30], Chaudhury [32]
and our method take 1700, 81, 42 and 5 terms respectively to
obtain approximation curves with the value 0.99 of the SSIM
index.) So, the run times of these methods depend on σr . It is
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Fig. 8. Quantization artifacts demonstration. (a) Input HDR image (32 bit
float, displayed by linear scaling). (b) Compressed image using 32 PBFIC
(32 bins). (c) Compressed image using our method. (d) Zoom-in of the square
in (b) as the upper image and that in (c) as the lower one.

not a good behavior for acceleration methods. To reduce the
number of approximation terms, we employ the best N-term
approximation on truncated trigonometric functions to find the
best approximation for arbitrary range kernels. Moreover,
the best N-term approximation strategy also helps us solve the
shortcoming of previous methods which can only approximate
the Gaussian function. It is also worth noting that the dropping
off small coefficients strategy adopted by Chaudhury [32]
to reduce the approximation terms can be interpreted as a
special case of best N-term approximation. Other than these,
our acceleration strategy also has two advantages: First, our
approximation is nonnegative as illustrated in Fig 7e. In con-
trast, some values of the approximation in Figs 7c 7d are
negative; Second, different from Figs 7b 7c, our approximation
does not suffer from blowing up small coefficients.

C. BF Comparison

In this section, we compare our acceleration method with
five state-of-the-art methods (i.e. Porikli [25], Yang et al. [17],
Gunturk [21], Pan et al. [22] and Chaudhury [32]) in terms of
qualitative and quantitative aspects. The techniques adopted
by the six methods are summarized in Table IV. For a fair
comparison, we implement all acceleration methods in C++
without SIMD instructions on a laptop with a 2.0 GHz CPU.
Here only experiments on approximating the bilateral filter
with Gaussian spatial and range kernels are provided to
illustrate the validity and the effectiveness of the proposed
method because the shiftability property based acceleration
technique [32] can only speed up the Gaussian range kernel.
Moreover, we set the number of bins equal to 32 in our
evaluation for the PBFIC based method [17] and the box
filtering based methods [21], [22], [25].

1) Accuracy: We start our experiments from three famous
images (i.e. Lena, Barbara and Boat). The statistical data in
the following paragraphs is an average of the three images.
First, we perform the visual comparison of the fast bilateral
filtering schemes. The filtering results of Lena are illustrated
in Fig 9. The color-coded images represent the absolute error
between the filtering image and ground truth. The variances of
the spatial kernel and the range kernel are σs ∈ {1, 4, 7, 10},
σr ∈ {10, 23, 37, 50}. The number of boxes used is 3 as we
find that the total run time of three box filters is nearly same
to the kernel separation method used by Yang et al. [17], and
the number of approximation terms for range kernel is 5.

TABLE V

RUN TIME COMPARISON. THE SIZE OF TESTED
IMAGE IS CHOSEN AS 1024 × 1024

Absolute error images in Fig 9 show that our method
produces smaller error than the other methods. Hence, bet-
ter accuracy is achieved in approximating BF. Besides the
visual comparison, we also offer a convincing and quan-
titative illustration for the advantages of our method over
previous methods. The SSIM index and the peak signal-to-
noise ratio (PSNR) are exploited to evaluate the approximation
errors of different methods. The statistical data with respect to
different bandwidth parameters are plotted in Fig 10. We can
easily verify that our method achieves the lowest approxima-
tion error for rather wide parameter variation interval.

2) Efficiency: A simple comparison of the run time of BF
acceleration schemes is not reasonable because all acceleration
methods make a tradeoff between speed and accuracy, and the
speed is usually inversely proportional to the accuracy. To con-
duct a fair comparison, we keep the PSNR indices of filtering
results unchanged and measure the speed of each method.
Strictly, the PSNR indices cannot be kept the same since they
are affected by various reasons. Here, we tweak the parameters
of each acceleration method and make the PSNR indices of
the filtering results around 32d B because these results are
visually distinguished from the ground truth. Table V plots
run times. We can observe that our approach consumes the
smallest run time among different σs and σr . More importantly,
unlike the shiftability property based methods, our run time
does not depend on the parameter σr . This is because many
terms are used to approximate the long tails of the Gaussian
function by other methods. In contrast, we only approximate
the value on the truncated interval. Note that for large σr ,
the shiftability properties based methods (i.e. Chaudhury [32]
and ours) achieve the best performance. Unlike Chaudhury,
our method needs to perform 3D box filtering caused by the
dimension promotion technique. Although both our method
and the dimension promotion based methods [21], [22] exploit
the dimension promotion technique, our method is faster
than these methods. This is because previous methods need
the multiplication operation along z axis and our approach
only requires the addition operation. This also proves that
the filtering accuracy can be significantly improved without
sacrificing efficiency.
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Fig. 9. Lena: a demonstration of the visual quality of the approximation results. From the first row to the sixth row, the results are Porikli [25],
Yang et al. [17], Gunturk [21], Pan et al. [22], Chaudhury [32] and ours, each column shows the filtering results and approximation errors under different
parameter settings, where the gray images are the filtering results procured by these BF acceleration methods and the color-coded absolute error maps denote
the filtering error compared with the brute-force implementation of BF. (a) σs = 1, σr = 10. (b) σs = 4, σr = 23. (c) σs = 7, σr = 37. (d) σs = 10, σr = 50.

3) Acceleration by Pre-Computation: Our method can be
accelerated further by pre-computation. In this section, we
will investigate how to integrate pre-computation with our
algorithm with respect to two cases.

Case 1 [The Input Image I Is Given, But the Parameters
Setting (σr , σs ) of BF Is Not Determined]: This is a frequently
encountered situation in practice. For example, when an image
already has been loaded into an image manipulation software
such as Adobe Photoshop but the filtering parameters are still
not determined by users, we are in this situation. If the image
manipulation software can pre-compute something during the
time waiting for the filtering parameters, the latency time for
final results will be undoubtedly decreased. Badly, authors of
existing acceleration methods [17], [21], [22], [25], [32] do
not propose any method to complete the task because all their
acceleration schemes depend on the exact values of σr , σs .
That is to say, existing methods cannot perform any calculation
without knowing (σr , σs). Unlike them, our method is able
to perform pre-computation with little modification. Strictly
speaking, our algorithm also cannot determine the exact value
of Tr before knowing σr , but we can make a tiny modification
for the original algorithm to pre-compute the value of Fc(y, z)

and Fs(y, z) with respect to some predefined values {Tri }.
The specific reason is that Fc(y, z) and Fs(y, z) in (36) only
involves an unknown parameter Tr indicating the truncated
region of the range kernel Kr (x). Once the exact value of
Tr is known, we can always take the minimum Tri such that
Tri ≥ Tr from the predefined set {Tri } to replace Tr . In plain
English, this is equivalent to extend the truncated region from
[−Tr , Tr ] to [−Tri , Tri ] and employ cos( πk

Tri
x) to approximate

the values of Kr (x) on the region [−Tri , Tri ]. Since Fc(y, z)
and Fs(y, z) have been figured out during the time loading
images, our algorithm only need to perform box filtering which
is a fast computation. Hence, without the computational burden
for Fc(y, z) and Fs(y, z), the actually filtering time can be
reduced from about 1.37s to about 0.69s according to our
experiment. At last, to describe the pre-computation algorithm
more formally, we outline the major computation steps of our
pre-computation algorithm in the following:

• Pre-computation while loading an image into the manip-
ulation software

1) Input image I and predefined values {Tri }.
2) Calculate a set of Fc(y, z) and Fs(y, z) according

to I and the values in {Tri }.
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Fig. 10. Qualitative evaluation for the filtering results of six methods, where SSIM and PSNR are chosen as the quantitative index to measure the approximation
error. (a) (b) illustrate the SSIM and PSNR approximation error surfaces. (c)-(n) plot the the SSIM and PSNR indices of each method, where the left part
shows SSIM, and the right part shows PSNR.

• Filtering procedure after specifying the parameter (σr , σs)

1) Find the minimum Tri such that Tri ≥ 3σr from the
predefined set {Tri }.

2) Compute the coefficients ak of the best
N-term approximation for the range kernel on
the range [−Tri , Tri ].

3) Put the pre-computed Fc(y, z) and Fs(y, z)
corresponding to Tri as well as ak into our fast
computation formulas listed in Section IV-D to yield
final filtering results.

Case 2 [Both Input Image I and Parameters Setting (σr , σs )
Are Given]: This situation implies that we need to process
input image immediately. Taking a close look at (2) (4) (8), we
can find that all acceleration methods involve exponential func-
tion exp(x) or trigonometric functions sin(x), cos(x). As we
known, both exponential function and trigonometric function
are time-consuming operations. Since the value of input image
is discrete, we can pre-compute a look-up table for the value
of exponential/trigonometric functions on these discrete points
to speed up the computation further. It is also worth noting that
the major reason that slows down the brute-force implementa-
tion of BF is also the exponential function used in (1). Taking
the look-up table technique, we can accelerate the brute-
force implementation too. However, we have to point out that
the look-up table technique cannot reduce the computational
complexity of the brute-force implementation and thus its run

Fig. 11. Run time illustration, where the abscissa axis denotes the radius
of box window and the ordinate axis presents the run time of each method.
BFT achieves the smallest run time when the radius is small and increases
its run time with the radius of box window. In contrast, run times of other
acceleration algorithms are constants and therefore are not dependent on
window’s radius.

time still depends on the size of box window Nx of BF.
Fig 11 illustrates the run time of seven methods with respect to
different window radii. We can plot this figure because Table V
implies that the speed of different acceleration methods is
rather robust for different parameter settings, thus the run time
at arbitrary parameter settings such as (σr = 40, σs = 5) can
stand for the performance of one kind of acceleration method.
Here the seven methods include Porikli [25], Yang et al. [17],
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TABLE VI

SUPPORT REGIONS AND THE SIZES OF THE BOX FILTERS
USED TO REPRESENT 2D HAAR FUNCTIONS

Gunturk [21], Pan et al. [22], Chaudhury [32], ours as well
as the brute-force implementation accelerated by the look-up
table (BFT). From Fig 11, we can verify that the run time
of BFT increases with the radius of the box window Nx .
In addition, when the size of window is small, the fastest
method is BFT. The reason is that the overall computational
cost of BFT is dominated by the size of the window Nx , so
smaller window size, lower computational cost and the run
time will increase with the window size. Unlike BFT, the
run time of all acceleration methods do not change with the
window size because their computational complexity is O(|I |).
Note that disregarding the small window case, our acceleration
algorithm overwhelms other acceleration methods.

VI. CONCLUSION

In this paper, we propose a unified framework to accelerate
BF with arbitrary spatial and range kernels. Unlike previous
approaches, our method jointly employs five techniques: trun-
cated spatial and range kernels, the best N-term approximation
of these kernels as well as three existing acceleration tech-
niques to speed up BF. It thus can inherit the advantage of
previous acceleration algorithms while avoiding the problems
of previous approaches. Moreover, we first transform 2D BF
into a set of 3D box filters and disclose that BF can be fast
computed by the 3D SAT. Taking advantage of the expressive
orthogonal functions used in the best N-term approximation
scheme, our approach employs fewer terms which means faster
computing speed, while obtaining more gratifying filtering
results among a great wide of parameter settings. More impor-
tantly, the strength of our method has been verified by sev-
eral carefully designed experiments. All experiments indicate
that our method outperforms other methods. Especially, the
filtering accuracy is significantly improved without sacrificing
efficiency.

APPENDIX A
BOX FILTER REPRESENTATION

All functions in the four sets {φ(x)φ(y)}, {φ(x)ψ j2,k2(y)},
{ψ j1,k1 (x)φ(y)} {ψ j1,k1 (x)ψ j2,k2 (y)} can be represented by
a linear combination of box filters. First, φ(x) achieves 1
in the support region A = [−Ts, Ts ]. Similarly, let Zk =
sign(k)(2|k| − 1)Ts , A j,k

1 = [2− j (Zk − Ts), 2− j Zk] and

Fig. 12. Visual illustration for the amplitude of the decomposition coefficients
of the spatial kernel G5(x) and range kernel G40(x) on the Haar and
trigonometric basis. (a) Haar decomposition. (b) Cosine decomposition.

A j,k
2 = [2− j Zk, 2− j (Zk + Ts)], the support region of ψ j,k(x)

can be presented as A j,k
1

⋃
A j,k

2 because ψ j,k(x) = 1 for
x ∈ A j,k

1 and ψ j,k(x) = −1 for x ∈ A j,k
2 . Second,

φ(x)φ(y) represents a 2D box function B̈(x) with the support
region A × A as φ(x) is constant in the region A. Unlike
φ(x)φ(y), φ(x)ψ j2,k2 (y) and ψ j1,k1(x)φ(y) are binary func-
tions equal to 1 in the regions A × A j2,k2

1 , A j1,k1
1 × A and

obtain −1 in the regions A × A j2,k2
2 , A j1,k1

2 × A, respec-

tively. Hence putting B̈1
0, j2,k2

(x), B̈2
0, j2,k2

(x), B̈1
j1,k1,0

(x) and
B̈2

j1,k1,0
(x) be four 2D box functions defined on the support

regions A × A j2,k2
1 , A × A j2,k2

2 , A j1,k1
1 × A and A j1,k1

2 × A
respectively, we thus have φ(x)ψ j2,k2 (y) = B̈1

0, j2,k2
(x) −

B̈2
0, j2,k2

(x), ψ j1,k1 (x)φ(y) = B̈1
j1,k1,0

(x)− B̈2
j1,k1,0

(x). Similar
to φ(x)ψ j2,k2 (y) and ψ j1,k1(x)φ(y), ψ j1,k1(x)ψ j2,k2(y) is also
a binary function. Unlike them, ψ j1,k1 (x)ψ j2,k2(y) equals to 1

on the regions A j1,k1
1 ×A j2,k2

1 , A j1,k1
2 ×A j2,k2

2 and obtains -1 on

the region A j1,k1
1 × A j2,k2

2 , A j1,k1
2 × A j2,k2

1 . Let B̈1
j1,k1, j2,k2

(x),
B̈2

j1,k1, j2,k2
(x), B̈3

j1,k1, j2,k2
(x) and B̈4

j1,k1, j2,k2
(x) be four

2D box functions with the support regions A j1,k1
1 × A j2,k2

1 ,
A j1,k1

1 × A j2,k2
2 , A j1,k1

2 × A j2,k2
2 and A j1,k1

2 × A j2,k2
1 , respectively,

we can reformulate ψ j1,k1 (x)ψ j2,k2(y) as B̈1
j1,k1, j2,k2

(x) −
B̈2

j1,k1, j2,k2
(x) + B̈3

j1,k1, j2,k2
(x) − B̈4

j1,k1, j2,k2
(x). Finally, we

list the support regions and the size of the box filters used
to represent 2D Haar functions in Table VI for reference.

Given all this, we can reexpress Ks(‖x‖) in (30) as

Ks(‖x‖) ≈
∑

c0∈	s
1

c0 B(x)

+
∑

c0, j2,k2 ∈	s
2

c0, j2,k2

2∑

i=1

(−1)i+1 Bi
0, j2,k2

(x)

+
∑

c j1,k1 ,0∈	s
3

c j1,k1,0

2∑

i=1

(−1)i+1 Bi
j1,k1,0(x)

+
∑

c j1,k1 , j2,k2 ∈	s
4

c j1,k1, j2,k2

4∑

i=1

(−1)i+1 Bi
j1,k1, j2,k2

(x)

(37)

which is consisted of several box filters. Further, let B̈ j (x)
present the 2D box functions used in (37), c j be the corre-
sponding coefficients of B̈ j (x) and	s stands for the collection
of c j , N j

x be the support region of B̈ j (x), we have (31).
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TABLE VII

THE CORRESPONDING RELATIONSHIP BETWEEN N AND M FOR
SPATIAL KERNEL G5(x) AND RANGE KERNEL G40(x)

APPENDIX B
HOW TO COMPUTE THE BEST N -TERM APPROXIMATION?

Theoretically, finding the best N-term approximation of
a given function requires us to minimize the objective
function (11). However, in practice the minimizing is not
necessary because the best N-term approximation for arbitrary
functions can be obtained by selecting the first N largest
coefficients and the amplitude of coefficients attenuates very
fast. The two points imply that the first N largest coefficients
must reside in the first M coefficients, where M is a constant
which is equal or greater than N . More clearly speaking, to
find the best N-term approximation, we only need to calculate
the first M coefficients and then pick up the first N largest
coefficients from the first M coefficients.

As an example, Fig 12 illustrates the coefficients on the
Haar basis and trigonometric basis for the Gaussian function
respectively, where the abscissa axis denotes the linear order of
each basis functions, the ordinate axis represents the amplitude
of coefficient of each basis functions. Note that since each
Haar function ψi, j is identified by two indices i , j , we order
each Haar function according to following rules: for two Haar
functions ψi1, j1 , ψi2, j2 , if i1 < i2 or i1 = i2 and j2 < j2,
ψi1, j1 is putted before ψi2 , j2; otherwise, ψi1, j1 is located
after ψi2, j2 . As for the trigonometric basis, all coefficients of
sine functions are zeros, we thus sort the cosine functions
cos(kωx) according the index k. From Figs 12a 12b, we
can observe that both the coefficients of Haar basis functions
and the coefficients of trigonometric basis functions decay
dramatically. The corresponding relationship between N and
M for spatial kernel G5(x) and range kernel G40(x) is listed
in Table VII which tells us the minimal number M of the first
M coefficients containing the first N largest coefficients. From
this table we can reasonably conclude that finding the best
N-term approximation only needs to figure out the first 20N
coefficients and then to select the first N largest coefficients
and their corresponding coefficients.
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