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Abstract—The Guided Filter (GF) is a widely used smoothing
tool in computer vision and image processing. However, to the
best of our knowledge, few papers investigate the mathematical
connection between this filter and the least squares optimization.
In this paper, we first interpret the guided filter as the cyclic
coordinate descent solver of a least squares objective function.
This discovery implies an extension approach to generalize the
guided filter since we can change the least squares objective
function and define new filters as the first pass iteration of the
cyclic coordinate descent solver of modified objective functions.
In addition, referring to the iterative minimizing procedure of
the cyclic coordinate descent, we can derive new rolling filtering
schemes. So we are reasonable to say that our discovery not
only reveals an approach to design new GF-like filters adapting
to specific requirements of applications but also offers thorough
explanations for two rolling filtering schemes of the guided filter
as well as the method to extend them. Experiments prove our
new proposed filters and rolling filtering schemes could produce
state-of-the-art results.

Index Terms—The Guided Filter (GF), Cyclic Coordinate
Descent (CCD), Rolling Filtering Schemes.

I. INTRODUCTION

The most fundamental smoothing tools in image processing
should be edge-aware filters. We can roughly divide them into
two categories: the explicit filter and the implicit filter. The
first kind of filters takes a mapping operator to transform
inputs to outputs. The well-known Gaussian, bilateral and
guided filters [1], [2], [3] are part of this type because we
can formulate them as the convolution operators explicitly.
In contrast, the mapping operator of the implicit filter is
not given. Instead, the filtering output is considered as the
minimizer of an objective function. Xu et al. [4] provide an
instance of this kind of filters.
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Each kind of filters has its merits and demerits. The explicit
filter is easy to implement and often has low computational
cost. But, it is not an easy task to design a new explicit filter
and analyze its rolling filtering behavior as people usually
define the mapping operator according to their intuition and
this encumbers the mathematical analysis of the explicit filter.
In order to achieve state-of-the-art results, the implicit filter
spend considerable computational time. This is because the
final results are yielded by the iterative solvers such as gradient
descent [5]. Disregarding the above shortcoming, the implicit
filter brings more convenience: designing a new implicit filter
can be reduced to proposing an objective function and finding
its solver, which has been well studied and owns a solid
theoretical foundation.

It is possible to draw upon the strong points of one kind
of filters to overcome the shortcomings of another kind of
filters. Specifically, if we establish the connection between the
mapping operator of the explicit filter and the iterative solver
of the objective function of the implicit filter, the problem
that cannot be addressed from the explicit/implicit perspective
alone would be solved by uniting two filtering viewpoints. The
benefits of this joint perspective are twofold:

• the filtering behavior of the explicit filter as well as its
rolling filtering usage is described by the iterative solver.
We thus not only can define new filters by modifying
objective functions but also are able to disclose their
rolling filtering usages from the minimizing procedure
of their iterative solver.

• the explicit filter deepens our understanding of the im-
plicit filter as it entitles each minimizing pass a fil-
tering connotation other than its original optimization
interpretation. This connection facilitates the intuitive
understanding of each iteration as well as its functions
in optimization.

Establishing the connection between the explicit filter and
the implicit filter is not new. Let q, p, L and Λ be an
N × 1 output vector, constraint, N × N Laplacian matrix
and diagonal matrix, respectively. He et al. [3] proved the
output of the guided filter approximates to one Jacobi iteration
in optimization (1). But He’s discovery leaves much to be

min
q

(q − p)TΛ(q − p) + qTLq (1)

desired because the guided filter and the iterative solver
of optimization (1) are not strictly equal and therefore the
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Jacobi algorithm cannot describe the behavior of guided image
filtering with multiple times.

Considering the potential benefits of the joint perspective for
the guided filter [3], we will disclose the equivalence between
the guided filter and the cyclic coordinate descent solver of the
least squares optimization. Further, the connection is exploited
to extend the guided filter as well as its rolling filtering
scheme. Our main contributions are threefold:
• We unveil that the guided filter equals to the cyclic

coordinate descent solver of a least squares objective
function and point out the rolling filtering usage of the
guided filter can be viewed as the minimizing procedure
for the objective function.

• We find a general framework to define new GF-like filters
and develop novel instances of GF-like filters in this
framework.

• We offer a mathematical foundation for two rolling
filtering schemes of the guided filter and the approach
to extend them.

II. RELATED WORK

In the literature, a lot of efforts are devoted to disclosing the
connection between the explicit filter and the implicit filter. Li
et al. [6] reveal the median filter corresponds to the analytic
form of the minimizer of the sum of the weighted absolute
error, thus it has fully explainable connections to global energy
minimization. However, this discovery between the mapping
operator and the closed-form solution is not as useful as the
relationship that connects the mapping operator of an explicit
filter to the iterative solver of the implicit filter since the latter
makes the two different filters be complementary.

Different from the way of Li, Elad [7] shows the bilateral
filter (BF) [2] emerges from a Bayesian optimization, as a
single iteration of the well-known Jacobi algorithm. But he
did not prove the bilateral filter is the solver of the Bayesian
optimization. Dong et al. [8] make progress by showing the
bilateral filter equals to the iterative reweighting solver, which
is a good approximation to the Newton’s method [5]. Later,
Caraffa et al. [9] introduce guidance information to the robust
optimization and define the guided bilateral filter as the solver
of the robust optimization. Imitating the iteratively minimizing
procedure, they invent a rolling filtering scheme for the guided
bilateral filter.

Since 2010, the guided filter has attracted much attention.
In order to address its defect caused by the box window, Lu et
al. [10] design a cross window for the cross-based local mul-
tipoint filter (CLMF). However, their geometric-adaptive win-
dow is still problematic. To solve the problem, Tan et al. [11]
design a symmetrical window for their multipoint filter with
local polynomial approximation and range guidance (MLPA).
In addition, Tan et al. introduce a spatial regularization term
to the guided filter and make their MLPA spatial-aware. But
the ability is at the cost of increasing runtime drastically. This
shortcoming is conquered by Dai et al. [12] who assemble
the fully connected guided filter (FCGF) by introducing tree
distance to the guided filter. Similarly, incorporating edge-
aware weights into the guided filter, Li et al. [13] propose

TABLE I: Lists of abbreviations.

CCD Cyclic Coordinate Descent

BF Bilateral Filter

CLMF Cross-based Local Multipoint Filter

MLPA Multipoint filter with Local Polynomial Approximation and
range guidance

FCGF Fully Connected Guided Filter

WGF Weighted Guided Filter

LLSURE Local Linear SURE-based Edge-preserving filter

GF Guided Filter

IGF Inverse Guided Filter

SGF Spatial-aware Guided Filter

TVGF Total Variation Guided Filter

CGF Conservative Guided Filter

ICGF Inverse Conservative Guided Filter

RGF Rolling Guidance Filtering

RMSF Rolling Mutual Structure Filtering

GF-RMSF GF based RMSF

CGF-RMSF CGF based RMSF

RFNF Rolling Flash/No-Flash Filtering

SIMD Single Instruction Multiple Data

the weighted guided filter (WGF) to address the halo artifacts
of the guided filter. Unlike Li, Qiu et al. [14] put forward
local linear SURE-based edge-preserving filter (LLSURE) that
exploits Stein’s unbiased risk estimate as a predictor for the
mean squared error adopted by the guided filter to filter out
noise while preserving edges and fine-scale details. Different
from previous work, Ham et al. [15] formulate the guided
image filtering as a nonconvex optimization, which is solved
by the majorize-minimization algorithm.

Although the guided filter is designed as one pass, non-
iterative filter, its rolling filtering scheme arouses extensive
concerns recently. Seo et al. [16] propose an iterative guided
filtering method, which is also adopted by Yelameli et al. [17],
for robust flash denoising/deblurring. Unlike previous work,
Zhang et al. [18] propose a novel Rolling Guidance Filtering
(RGF) scheme with the complete control of detail smooth-
ing under a scale measure. However, none of above work
establishes the connection between the guided filter and some
iterative solvers and thus is not able to benefit from uniting
two filtering schemes.

The remainder of this paper is organized as follows: in sec-
tion III, we establish the connection between the guided filter
and the cyclic coordinate descent solver of the least squares
optimization. Employing this connection, we propose several
new GF-like filters and rolling filtering schemes in section
IV. In the last section, we conduct extensive experiments to
disclose the smoothing ability of newly proposed filters and
rolling filtering schemes. Final results prove that our filters
and rolling filtering schemes are superior to other methods.
At last we note that our paper involves lots of abbreviations.
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Fig. 1: The cyclic coordinate descent interpretation for the
guided filter and the method to extend it. The mapping operator
(3) (4) of the guided filter equals to the cyclic coordinate
descent solver (7) (9) of objective function (6). We can modify
the objective function and derive new GF-like filters and
rolling filtering schemes from its cyclic coordinate descent
solver. More specifically, new GF-like filters can be derived
from the first pass iteration of the cyclic coordinate descent
solver of the modified objective functions and the minimizing
procedure determined by the cyclic coordinate descent solver
indicates a new rolling scheme.

For easy reference, we list all of them in Table I.

III. THE EQUIVALENCE

The guided filter has a close connection with the cyclic
coordinate descent solver of the least squares optimization.
As outlined in Fig 1, we will devote this section to exhibit the
equivalence between the mapping operator of the guided filter
and the cyclic coordinate descent solver of the least squares
optimization.

A. The Definition of the Guided Filter

Initially, the guided filter is defined in the two steps local
multipoint filtering framework [19]:

1) multipoint estimation: calculating multipoint estimates q′i
for each pixel i in the image domain Ω according to the linear
transform q′i = akIi+bk,∀k ∈ ωi in a window ωi centered at i,
where I is the guidance image, (ak, bk) is the minimizer (3)
of (2), p is the filtering input, ε is a constant, Eωi

(x) and
Dωi

(x) denote the average and variance of x in the window
ωi.

min
ak,bk

∑
i∈ωk

((akIi + bk − pi)2 + εa2
k) (2)

ak =
Eωk

(Ip)− Eωk
(I)Eωk

(p)

Dωk
(I) + ε

bk = Eωk
(p)− akEωk

(I)

(3)

2) aggregation: as each pixel i has a number of estimates
indexed by k ∈ ωi, the filtering result q is defined as the
average of these multipoint estimates.

qi = Eωi
(q′) = Eωi

(a)Ii + Eωi
(b) (4)

Algorithm 1 The Guided Image Filtering Algorithm

1: procedure GF
2: Inputs:

input image p, guidance image I ,
regularization ε

3: ak =
Eωk

(Ip)−Eωk
(I)Eωk

(p)

Dωk
(I)+ε

4: bk = Eωk
(p)− akEωk

(I)
5: qi = Eωi(q

′) = Eωi(a)Ii + Eωi(b)
6: end procedure

For clarity, we list above guided image filtering algorithm
of the guided filter in Algorithm 1. Please refer to original
paper [3] for detail information.

B. A Cyclic Coordinate Descent Interpretation

Mathematically, the cyclic coordinate descent is based on
the idea that the minimizer of a multivariable function F can
be obtained by minimizing it along one direction at a time.
That is, in each iteration, for each index i of the problem, CCD

xn+1
i = arg min

y
F (xn+1

1 , . . . ,xn+1
i−1 ,y,x

n
i+1, . . . ,x

n
m) (5)

algorithm cyclically solves it according to (5). where xni and y
are vectors. Thus, one may begin with an initial guess x0 and
gets a sequence {x0,x1,x2, . . . } that has F (x0) ≥ F (x1) ≥
F (x2) ≥ . . . .

Applying the cyclic coordinate descent algorithm to opti-
mize the objective function (6), we can verify that (3) (4)

min
q,a,b

∑
k∈Ω

∑
i∈ωk

((akIi + bk − qi)2 + εa2
k) (6)

are the closed-form solutions of (6) by cyclically minimizing
q and (a, b). In the first step, let q0 = p and P0(qn, I, ε) =∑
i∈ωk

((akIi+bk−qni )2 +εa2
k), the cyclic coordinate descent

minimizes optimization (7). We can formulate the closed-

an+1
k , bn+1

k = arg min
ak,bk

P0(qn, I, ε) (7)

form solutions of an+1
k , bn+1

k of (7) as (8). In the second step

an+1
k =

Eωk
(Iqn)− Eωk

(I)Eωk
(qn)

Dωk
(I) + ε

bn+1
k = Eωk

(qn)− an+1
k Eωk

(I)

(8)

with fixed an+1
k , bn+1

k , the cyclic coordinate descent algorithm
computes the minimizer of (9), where P1(an+1, bn+1, I) =

qn+1
i = arg min

qi

P1(an+1, bn+1, I) (9)

∑
k∈ωi

(an+1
k Ii + bn+1

k − qi)2 and qn+1
i can be formulated as

(10).

qn+1
i = Eωi(a

n+1)Ii + Eωi(b
n+1) (10)
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We note that (8) (10) are same to (3) (4) except for an extra
iteration index n. This implies the guided filter equals to the
first cyclic coordinate descent iteration of (6) with an initial
guess q0 = p. Moreover, let GF(qn, I, ε) denote the filtering
outputs of the guided filter with respect to the input qn, the
rolling filtering scheme (11) can be interpreted as the cyclic

qn+1 = GF(qn, I, ε) (11)

coordinate descent minimizing procedure of (6). The reason
is that the filtering result of the guided filter with the input qn

obtained from the nth cyclic coordinate descent iteration equals
to qn+1 i.e. n + 1th cyclic coordinate descent iteration. To
further broaden the understanding for above two equivalence,
we outline this discovery and main idea in Fig 1. Specifically,
employing the equivalence,
• we can modify the objective function and exploit the

cyclic coordinate descent to define new GF-like filters
due to the equivalence between the guided filter and one
cyclic coordinate descent iteration.

• we can derive rolling filtering schemes from the cyclic
coordinate descent algorithm because the iteratively min-
imizing procedure of the cyclic coordinate descent indi-
cates new rolling filtering schemes.

IV. THE METHOD FOR EXTENSION

The equivalence between the guided filter and the cyclic
coordinate descent algorithm exposes possible ways to extend
the filter. In this section, we are going to develop new GF-
like filters and their rolling filtering schemes according to the
technical roadmap illustrated in Fig 1.

A. New GF-like Filters

New filters can be derived by modifying the objective
function (6) and defining them as the first CCD pass of new
objective functions. Following this roadmap, we propose five
GF-like filters( i.e. SGF, TVGF, CGF, IGF, ICGF) and two
rolling filtering schemes (i.e. CGF-RMSF and RFNF). Refer
to Table I for details of these abbreviations.

1) The Spatial-aware Guided Filter (SGF): Both Tan [11]
and Dai [12] complain that the guided filter only considers
the color similarity. To address the problem, Tan introduces
a spatial regularization term into his multipoint filter and
Dai appends a spatial tree weight into the fully connected
guided filter. However, both methods will increase the runtime
significantly. In addition, the fully connected guided filter is
apt to yield artifacts in the rolling guidance filtering [18] as the
minimal spanning tree used by the fully connected guided filter
often fails to represent the geometric structure of the iteratively
refined guidance. In this regard, we derive the spatial-aware
guided filter, a GF-like counterpart for the bilateral filter used
in the rolling guidance filtering, from the cyclic coordinate
descent solver of (12), where σ is a constant controlling the

min
q,a,b

∑
k∈Ω

∑
i∈ωk

(wki(akIi + bk − qi)2 + εa2
k) (12)

spatial similarity. Our spatial-aware guided filter not only takes
the Gaussian spatial similarity wki = exp(−‖k − i‖2/σ) into
account but also can be integrated with the rolling guidance
filtering scheme [18] satisfactorily in terms of computational
efficiency and smoothing quality.

The minimizer of (12) can be found by iteratively
computing (13) (14) with an initial guess q0 = p,
where Ewωi

(x) =
∑
j∈ωi

wijxj/
∑
j∈ωi

wij and
Dw
ωi

(x) = Ewωi
(x2) − (Ewωi

(x))2 denote weighted
average/variance in the window ωi with respect to the
gaussian weight wij . Following the cyclic coordinate
descent interpretation for the guided filter, we define the
spatial-aware guided filter as (13) (14) with n = 0 and q0 = p.

an+1
k , bn+1

k = SGFc(qn, I, ε)k

= arg min
ak,bk

∑
i∈ωk

(wki(akIi + bk − qni )2 + εa2
k)

an+1
k =

Ewωk
(Iqn)− Ewωk

(I)Ewωk
(qn)

Dw
ωk

(I) + ε

bn+1
k = Ewωk

(qn)− an+1
k Ewωk

(I)
(13)

qn+1
i = SGF(qn, I, ε)i

= arg min
qi

∑
i∈ωk

wki(a
n+1
k Ii + bn+1

k − qi)2

= Ewωi
(an+1)Ii + Ewωi

(bn+1)

(14)

2) The Total Variation Guided Filter (TVGF): The guided
filter has no idea about what kind of the output is preferred
because the cost function (6) of the guided filter only considers
the constraint between the guidance I and output q. In order
to produce the most favorite noise free result, we assemble
a new cost function (15) by appending a Total Variation

min
q,a,b

∑
k∈Ω

(λTV2(qk) +
∑
i∈ωk

((akIi + bk − qi)2 + εa2
k)) (15)

(TV) regularization term TV(gi) =
√
∂2
xgi + ∂2

ygi to the cost

function (6). Putting P2(an+1, bn+1, I) =
∑
k∈Ω(λTV2(qk)+∑

i∈ωk
((an+1

k Ii + bn+1
k − qi)2) and q0 = p, we can achieve

the minimizer by iteratively calculating (16) (17) according

an+1
k , bn+1

k =arg min
ak,bk

P0(qn, I, ε) (16)

qn+1
i =arg min

qi

P2(an+1, bn+1, I) (17)

to the cyclic coordinate descent algorithm. The optimal so-
lutions of an+1

k , bn+1
k are expressed as (18) which is same

to the definition (7) of the guided filter. Different from (9),

an+1
k =

Eωk
(Iqn)− Eωk

(I)Eωk
(qn)

Dωk
(In) + ε

bn+1
k = Eωk

(qn)− an+1
k Eωk

(I)

(18)

the minimizer qn+1
i of (17) equals to (19), where fn+1

i =∑
i∈ωk

an+1
k Ii+b

n+1
k , D = F∗(∂x)F(∂x)+F∗(∂y)F(∂y), F
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qn+1
i = F−1

(
F(fn+1)

|ωk|F(1) + λD

)
i

(19)

is the Fast Fourier Transform (FFT) operator and F∗ denotes
the complex conjugate. F(1) is the Fourier Transform of
the delta function and |ωk| denotes the pixel number in the
window ωk. Moreover, the plus, multiplication and division in
(19) are all component-wise operators.

We define the total variation guided filter as the first cyclic
coordinate descent pass of (18) (19). Above cyclic coordinate
descent minimization can be written in the rolling filtering
form (20), where q = TVGF(p, I, ε, λ) denotes the filtering
output q of the total variation guided filter.

qn+1 = TVGF(qn, I, ε, λ) (20)

3) The Conservative Guided Filter (CGF): We found that
the minimizers of objective functions (6) (15) are trivial
zeros. This discovery indicates that both guided filter and total
variation guided filter will consume the “energy” of images at
each iteration and therefore are dissipative. Note that previous
GF-like filters such as the cross-based local multipoint filter
[10], the multipoint filter with local polynomial approximation
and range guidance [11], the weighted guided filter [13],
the fully connected guided filter [12] and the local linear
SURE-based edge-preserving filter [14] are also dissipative
filters. Readers can verify this from their trivial results of
multiple time filtering. We consider that an ideal filter should
be conservative, i.e. the rolling filtering result must converge
to a nontrivial solution. To achieve this goal, we build the
cost function (21) and exploit its cyclic coordinate descent
iteration to derive the conservative guided filter. Here g denotes
a reference image used to constrain the derivation between the
output q and g via the data term (qi − gi)2. In practice, we
usually set it as the input p. So, the solution of (21) must be
nontrivial.

min
q,a,b

∑
k∈Ω

(
∑
i∈ωk

((akIi + bk − qi)2 + εa2
k) + λ(qk − gk)2) (21)

According to the cyclic coordinate descent algorithm, we
can achieve the minimal point of the objective function (21)
by iteratively computing (22) (23) with an initial guess q0 =

an+1
k , bn+1

k =arg min
ak,bk

P0(qn, I, ε) (22)

qn+1
i =arg min

qi

P3(an+1, bn+1, I, g, λ) (23)

p, where P3(an+1, bn+1, I, g, λ) =
∑
k∈ωi

(an+1
k Ii + bn+1

k −
qi)

2 + λ(qi − gi)2. Note that the solution of (22) is same to
(18). Putting α = λ

|ωi|+λ , we can reformulate the solution of
(23) as

qn+1
i = (1− α)GF(qn, I, ε)i + αgi (24)

Similar to the definition of the total variation guided filter,
the conservative guided filter is defined as the first pass

iteration of (22) (23). We thus have q = CGF(p, I, g, ε, λ) =
(1−α)GF(p, I, ε)+αg. Further, the cyclic coordinate descent
minimizing procedure for the objective function (21) can be
reformulated in the rolling filtering form (25).

qn+1 = CGF(qn, I, g, ε, λ) (25)

4) The Inverse Guided Filters: In the filtering scheme of
the guided filter, the guidance image is used to compute the
smoothing result. People may raise the following question
naturally: can we inverse the filtering procedure by estimating
the guidance G from a smoothing result q? Luckily, the answer
is positive. We employ the objective function (26) with the
initial guess G0 = I to formulate the Inverse Guided Filter
(IGF).

min
G,a,b

∑
k∈Ω

∑
i∈ωk

((akGi + bk − qi)2 + εa2
k) (26)

Applying the cyclic coordinate descent algorithm to the cost
function (26), we iteratively calculate following two subprob-
lems (27) (28), where P0(p,Gn, ε) =

∑
i∈ωk

((akG
n
i + bk −

an+1
k , bn+1

k = arg min
ak,bk

P0(q,Gn, ε) (27)

Gn+1
i = arg min

Gi

P4(an+1, bn+1, q) (28)

qi)
2+εa2

k) and P4(an+1, bn+1, q) =
∑
k∈ωi

(an+1
k Gi+b

n+1
k −

pi)
2. Minimizing P0(q,Gn, ε) in (27), we can formulate the

closed-form solution of an+1
k , bn+1

k as (29). Solving the least

an+1
k =

Eωk
(Gnq)− Eωk

(Gn)Eωk
(q)

Dωk
(Gn) + ε

bn+1
k = Eωk

(q)− an+1
k Eωk

(Gn)

(29)

squares optimization (28), we have (30) and define the inverse

Gn+1
i =

Eωi(a
n+1)qi − Eωi(a

n+1bn+1)

Eωi
(an+1an+1)

(30)

guided filter as the first cyclic coordinate descent pass of (29)
(31) with G0 = I and denote its output G as (31).

G = IGF(q, I, ε) (31)

Similarly, the Inverse Conservative Guided Filter (ICGF)
G = ICGF(q, I, g, ε, λ) is defined as the first cyclic coordinate
descent pass of (32). Here g controls the derivation between
the output G and g. In practice, we usually set it as the
input guidance I . In the first step, we solve an+1

k , bn+1
k =

min
G,a,b

∑
k∈Ω

∑
i∈ωk

((akGi + bk − qi)2 + εa2
k) + λ(Gk − gk)2

(32)

arg min
ak,bk

P0(q,Gn, ε) and obtain (33). In the second step,

we optimize minG
∑
k∈Ω

∑
i∈ωk

((akGi + bk − qi)2 + εa2
k) +

λ(Gk − gk)2 and thus have (34).
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an+1
k =

Eωk
(Gnq)− Eωk

(Gn)Eωk
(q)

Dωk
(Gn) + ε

bn+1
k = Eωk

(q)− an+1
k Eωk

(Gn)

(33)

Gn+1
i =

∑
k∈ωi

(an+1
k qi − an+1

k bn+1
k ) + λgi∑

k∈ωi
(an+1
k )2 + λ

(34)

Note that it is unwise to use the inverse guided filter or the
inverse conservative guided filter alone because they usually do
not produce visually meaningful results. We instead compose
inverse guided filters with their guided filtering counterparts
to perform mutual structure filtering in section IV-B1.

B. Rolling Filtering Schemes

Although the guided filter is designed as a non-iterative
filter, its rolling filtering usages still have important applica-
tions. We devote this section to the theoretical explanation and
improvement for these rolling filtering schemes.

1) Rolling Mutual Structure Filtering (RMSF): The guided
filter assumes the geometric structure of both guidance and
input coincides with each other. But it is a strong assump-
tion and will cause that the guided filter yields texture
mapping artifacts. One way to deal with the inconsistent
structure between the guidance and the input is to estimate
their mutual structures. Based on the discovery of Shen et
al. [20], we minimize (35) to obtain textureless results, where
E(q, a, b,G, c, d) =

∑
k∈Ω

∑
i∈ωk

((akGi+ bk−qi)2 +εa2
k)+

((ckqi + dk −Gi)2 + εc2k).

min
q,a,b,G,c,d

E(q, a, b,G, c, d) (35)

The optimization can be solved by iteratively computing
four subproblems (36)-(39) with q0 = p and G0 = I , where
αi(x) = 1

1+Eωi
(x2) . (36) (37) are used to estimate the linear

coefficients used in the guided filter and the inverse guided
filter. (38) (39) calculate the linear combination of the guided
filter and the inverse guided filter. So we say that we disclose
the filtering explanation for the rolling mutual structure filter-
ing successfully and thus we call above procedure the guided
filter based rolling mutual structure filtering. For clarity, we
list the guided filter based rolling mutual structure filtering
algorithm in Algorithm 2.

an+1
k , bn+1

k = arg min
ak,bk

P0(qn, Gn, ε) (36)

cn+1
k , dn+1

k = arg min
ck,dk

P0(Gn, qn, ε) (37)

qn+1
i = arg min

qi

P1(an+1
k , bn+1

k , Gm) + P4(cn+1
k , dn+1

k , Gn)

= αi(c
n+1)GF(qn, Gn, ε)i (38)

+ (1− αi(cn+1))IGF(Gn, qn, ε)i

Gn+1
i = arg min

Gi

P1(cn+1
k , dn+1

k , qn) + P4(an+1
k , bn+1

k , qn)

= αi(a
n+1)GF(Gn, qn, ε)i (39)

+ (1− αi(an+1))IGF(qn, Gn, ε)i

Algorithm 2 The GF based RMSF Algorithm (The guided
filter based rolling mutual structure filtering algorithm)

1: procedure GF-RMSF
2: Inputs:

p,I ,ε,ε,N
3: Initialize:

q0 = p,G0 = I
4: for n = 0 to N do
5: an+1

k , bn+1
k = arg minak,bk P0(qn, Gn, ε)

6: cn+1
k , dn+1

k = arg minck,ck P0(Gn, qn, ε)

7: qn+1
i = αi(c

n+1) GF(qn, Gn, ε)i + (1 −
αi(c

n+1)) IGF(Gn, qn, ε)i
8: Gn+1

i = αi(a
n+1) GF(Gn, qn+1, ε)i + (1 −

αi(a
n+1)) IGF(qn+1, Gn, ε)i

9: end for
10: end procedure

Note that the filtering pair, the guided filter and the inverse
guided filter, play important roles in the guided filter based
rolling mutual structure filtering algorithm according to (38)
(39). Specifically, when the guidance G0 and input q0 are
equal, the mutual structure for the same image G0 = q0 will
be itself. Intuitively, we may consider that the output should
be same to the input. In fact, the output and input are not
equal. The reason is that in the rolling minimizing procedure
(38) (39), the guided filter smooths out details but the inverse
guided filter plays the role of preserving the major structure
from a smoothed input. Thanks to the two antagonistic terms,
the rolling mutual structure filtering can preserve the major
structure and suppress details/textures in final results. Due to
the same reason, the output cannot be same to the input.

The objective function proposed by Shen [20] can be
reduced to (35) if Shen’s parameters λ = β = 0. However,
the equivalence does not imply our filtering interpretation
for the rolling mutual structure filtering is trivial. One major
contribution of our work is that we first disclose the filtering
explanation for each iteration step. In addition, we can disclose
things that are not revealed by Shen. For instance, Shen
reports the rolling filtering scheme (40) cannot produce mutual
structure filtering results. However, he does not provide an
explanation for its filtering behavior. Here we employ the
guided filter based rolling mutual structure filtering stated
above to illustrate the reason. Comparing (38) (39) with (40),
we can find that (38) (39) have two extra inverse guided
filter terms which learn guidance from input. So, the mutual
structure filtering result is the linear combination of the guided
filter and the inverse guided filter. In contrast, (40) only
considers the guided filter part which will wipe out details
without the help of the inverse guided filter.

qn+1
i = GF(qn, Gn, ε)i

Gn+1
i = GF(Gn, qn, ε)i

(40)

Another contribution of our filtering interpretation is that we
can employ the rolling mutual structure filtering interpretation
to define the inverse conservative guided filter based rolling
mutual structure filtering. This is because we can substitute
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Algorithm 3 The CGF based RMSF Algorithm (The con-
servative guided filter based rolling mutual structure filtering
algorithm)

1: procedure CGF-RMSF
2: Inputs:

p,I ,ε,ε,λ,β,N
3: Initialize:

q0 = p,G0 = I
4: for n = 0 to N do
5: an+1

k , bn+1
k = arg minak,bk P0(qn, Gn, ε)

6: cn+1
k , dn+1

k = arg minck,ck P0(Gn, qn, ε)
7: αi(c

n+1) = 1
1+Eωi

((cn+1)2)
, αi(a

n+1) =
1

1+Eωi
((an+1)2)

8: qn+1
i = αi(c

n+1) CGF(qn, Gn, p, ε, λ)i + (1 −
αi(c

n+1)) ICGF(Gn, qn, I, ε, β)i
9: Gn+1

i = αi(a
n+1) CGF(Gn, qn+1, I, ε, β)i+ (1−

αi(a
n+1)) ICGF(qn+1, Gn, p, ε, λ)i

10: end for
11: end procedure

the filter pair (GF (p, I, ε), IGF (p, I, ε)) in the guided filter
based rolling mutual structure filtering with (CGF (p, I, ε, λ),
ICGF (p, I, ε, λ)) to assemble the inverse conservative guided
filter based rolling mutual structure filtering which is illus-
trated in Algorithm 3 and has better filtering results.

C. Rolling Flash/No-Flash Filtering (RFNF)
To enhance the quality of flash/no-flash image pairs, Seo et

al. [16] take the guided filter to synthesize a new image which
composes a base image B and a detail image D computed
from the flash/no-flash image pairs (I f, In) and offer a spectral
analysis to illustrate why the rolling usage (41) with q0 =

qk+1 = GF(qk, I f, ε)︸ ︷︷ ︸
the base image B

+λ (I f − GF(I f, I f, ε))︸ ︷︷ ︸
the detail image D

(41)

In can yield better result. Differently, we will interpret (41)
as an approximation for the cyclic coordinate descent solver
of the objective function (42), where Ie = GF(I f, I f, ε) +

min
q,a,b

∑
k∈Ω

(
∑
i∈ωk

((akIi + bk − qi)2 + εa2
k) + λ(qk − Ie

k)2) (42)

τ(I f − GF(I f, I f, ε)). Let g be an alias of Ie, the objective
function is same to (21). Hence we can achieve the minimizer
by iteratively computing (43) with α = λ

|ωi|+λ .

qn+1
i = (1− α)GF(qn, I f, ε)i + αIe

i (43)

If α ≈ 0 and τ = λ
α , we have (1 − α) ≈ 1 and

αIe ≈ λ(I f−GF(I f, I f, ε)). In addition, qn+1 in (43) reduces
to GF(qn, I f, ε) + λ(I f − GF(I f, I f, ε)) which has the same
form with (41). This discovery convinces that the rolling
filtering scheme of Seo is just an approximation for a special
case of (43). We therefore can generalize (41) to (43). More
importantly, the generalization produces much better results in
motion deblurring.

V. COMPARISON AND EXPERIMENTS

We now demonstrate that our new filters and rolling filtering
schemes are capable to generate state-of-the-art results for
different applications, where all filters are implemented in
C++ without SIMD (single instruction multiple data) opti-
mization on an i7 CPU with 4GB memory and five GF-
like filters, including the cross-based local multipoint filter
(CLMF) [10], the multipoint filter with local polynomial
approximation and range guidance (MLPA) [11], the weighted
guided filter (WGF) [13], the fully connected guided filter
(FCGF) [12] and the local linear SURE-based edge-preserving
filter (LLSURE) [14], are used to perform comparison.

A. Computational Complexity

Similar to the guided filter, the spatial-aware guided filter
can be computed in linear time as it only substitutes the aver-
age operator Eωi

(x) used in the guided filter for the weighted
average operator Ewωi

(x). The computational complexity of the
spatial-aware guided filter therefore is determined by Ewωi

(x)
of which the computational complexity is same to the Gaussian
convolution

∑
j∈ωi

wijxj . As is known to us,
∑
j∈ωi

wijxj
can be computed in linear time via the acceleration algo-
rithms [1]. Table II reports the runtime of the spatial-aware
guided filter to filter one-megapixel image. The speed of the
spatial-aware guided filter is almost same to the guided filter
and significantly faster than the multipoint filter of Tan [11]
and the fully connected guided filter of Dai [12].

As for the total variation guided filter, it no longer can be
computed in linear time as the computational complexity of
FFT operator F is O(n log n). However, it does not mean that
the total variation guided filter cannot be computed efficiently
because the implementation of FFT is highly optimized on
modern hardware [21]. We can verify this in Table II as it
does not increase the runtime very much.

The computational complexity of the conservative guided
filter, the inverse guided filter and the inverse conservative
guided filter is same to the guided filter which is linear
computational complexity because all of them only involve
point-wise arithmetic calculations and the average operator
E(x). Table II reports the runtime of eleven filters to filter one-
megapixel image. The speed of our conservative guided filter,
inverse guided filter and inverse conservative guided filter is
almost same to the guided filter and significantly faster than
the cross-based local multipoint filter, the multipoint filter with
local polynomial approximation and range guidance and the
fully connected guided filter.

B. Texture Smoothing and Enhancement

Fig 2 plots the texture smoothing and enhancement results
produced by the bilateral filter (BF) [2] and GF-like filters:
the guided filter (GF) [3], the cross-based local multipoint
filter (CLMF) [10], the multipoint filter with local polynomial
approximation and range guidance (MLPA) [11], the weighted
guided filter (WGF) [13] [13], the fully connected guided
filter (FCGF) [12], the spatial-aware guided filter (SGF) in
the Rolling Guidance Filtering (RGF) [18] scheme. From the
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TABLE II: Running time comparison of eleven GF-like filters for one megapixels filtering, where GF, CLMF, MLPA, WGF,
FCGF, LLSURE, SGF, TVGF and CGF denote the guided filter [3], the cross-based local multipoint filter [10], the multipoint
filter with local polynomial approximation and range guidance [11], the weighted guided filter [13], the fully connected guided
filter [12], the local linear SURE-based edge-preserving filter [14], ours spatial-aware guided filter, total variation guided filter
and conservative guided filter, respectively.

GF [3] CLMF [10] MLPA [11] WGF [13] FCGF [12] LLSURE [14] SGF TVGF CGF IGF ICGF
Time 820ms 1780ms 3520ms 840ms 1810ms 830ms 860ms 870ms 830ms 810ms 820ms

Input BF [2] GF [3] CLMF [10] MLPA [11] WGF [13] FCGF [12] SGF

Fig. 2: Texture Smoothing and Enhancement results. The images in the first two rows are texture smoothing results and their
close-ups. Similarly, the images in the last two rows are detail enhancement results and their close-ups. From left to right,
the images are input and results yielded by BF(σs = 5, σr = 0.2), GF(r = 10, ε = 0.001), CLMF(τ = 0.196, ε = 0.04),
MLPA(k = 0.1/255, εs = 0.0052, εr = 1), WGF(r = 5, ε = 0.04), FCGF(σ = 0.5, ε = 1), SGF(r = 10, ε = 0.001, σ = 5) in
the Rolling Guidance Filtering scheme [18].

TABLE III: Quantitative comparison for seven denoisng methods in terms of PSNR, MSE and SSIM. The method with best
denoisng ability usually receives large PSNR and SSIM values and a small MSE index.

GF [3] CLMF [10] MLPA [11] FCGF [12] WGF [13] LLSURE [14] TVGF
PSNR 21.8370 22.6815 22.3029 23.4069 23.1650 23.7239 24.5191
MSE 0.0066 0.0054 0.0060 0.0048 0.0050 0.0041 0.0035
SSIM 0.8878 0.8940 0.8908 0.9102 0.9059 0.9261 0.9384

texture smoothing results and their close-ups in the first two
rows, we can observe that the result of SGF is similar to BF.
Contrastively, GF, CLMF and WGF fail to remove all textures
because they do not consider the spatial similarity which is the
key to perform textures-aware smoothing in the RGF scheme.
Similar to SGF, MLPA and FCGF take the spatial similarity
into account too and therefore produce acceptable results.
However, the biggest problem of them is the running cost:
MLPA and FCGF spend more time than SGF. Although BF
is comparable with SGF in texture smoothing, it suffers from
gradient reversal artifacts in image enhancement as illustrated
in the third row and the close-up in the fourth row. In contrast,
all GF-like filters including our SGF do not have the problem
according to the experiment results.

C. Noise and Haze Removal

Benefiting from the total variation regularization [23], [24],
the total variation guided filter (TVGF) is able to reduce noise
without structure degradation. For qualitative comparison, we
demonstrate the denoising results of seven filtering methods in
the first two rows of Fig 3. Visually, only the results of FCGF
and LLSURE are comparable with our TVGF. Table III adopts
three indices including PSNR [25], MSE [26] and SSIM [27]
to estimate the denoisng quality. Our TVGF ranks first on all
three indices.

The total variation regularization also empowers TVGF the
halo artifacts suppression ability, which is the selling point
of WGF. The second row in Fig 3 and its close-ups show
an instance from the single image haze removal experiment.
From this figure, it is not difficult to find that only the results
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Input GF [3] CLMF [10] MLPA [11] FCGF [12] WGF [13] LLSURE [14] TVGF

Fig. 3: Noise and Haze Removal. The images in the first two rows are denoising results and their close-ups. The images in
the last two rows are haze removal results and their close-ups which illustrate halo artifacts. From left to right, the images are
input and results yielded by GF(r = 10, ε = 0.1), CLMF(τ = 0.196, ε = 0.04), MLPA(k = 0.1/255, εs = 0.0052, εr = 1),
FCGF(σ = 0.5, ε = 1), WGF(r = 20, ε = 0.001), LLSURE(r = 5), TVGF(r = 10, ε = 0.01, λ = 45).

G
F

C
G

F

(a) Iteration 1 (b) Iteration 10 (c) Iteration 50

(d) PBP of GF (e) PBP of CGF

Fig. 4: Stereo Matching Comparison. From Fig a to Fig c, the
images are the results of the guided filter (a typical dissipative
filters) and the conservative guided filter (our conservative fil-
ter) respectively, where the images are stereo matching results
produced by the guided filter and the conservative guided filter
with different iteration numbers and red pixels indicate bad
matching pixels. (d) and (e) illustrate PBP performance curve
with respect to different iteration numbers. Here PBP denotes
the Percentage of Bad matching Pixels [22].

of TVGF and WGF do not suffer from halo artifacts.

D. Multiple Time Filtering for Stereo Matching

In the stereo matching framework [28], the guided filter
is employed to smooth each slice of the cost volume one
pass. However “Is it optimal to filter each slice one pass?”
We find that the answer is negative. The reason is that the
PBP performance curve of the guided filter, illustrated in the
first row of Fig 4, is a parabola-like line. We owe this to the
dissipation property of the guided filter. Specifically speaking,
the PBP performance increases with the iteration number N
on an interval [0, N̄) since the noise is removed gradually
without degrading image edges very much. Here N̄ denotes the
optimal filtering number and usually is greater than one. With
the filtering time increasing (i.e. N ∈ (N̄ ,∞]), the structure
information of inputs will be depleted by dissipative filters,
so the PBP performance will decrease on the interval (N̄ ,∞].
But it is very hard to decide the optimal filtering pass N̄ in
advance. Unlike the dissipative guided filter, the PBP curve
of the conservative guided filter is monotonically decreasing
because the conservative guided filter is conservative and can
preserve the structure information of input no matter how
many times filtering are applied. The property implies an easy
way to choose N for the conservative guided filter (CGF):
within an admissive computational burden, we make N as
large as possible. The ability of the conservative guided filter
brings us much convenience as we no longer need to tweak
N carefully as we do for the guided filter.

E. Major Structure Extraction

We compare the ability of the guided filter based rolling
mutual structure filtering (40) and the methods of Xu [4],
Zhang [18], Shen [20] in extracting the major structure and
illustrate results in Fig 5. The rolling filtering scheme (40)
does not yield satisfactory result as it only considers the
smoothing part of Rolling Mutual Structure Filtering (RMSF)
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Input Equation (40) Xu [4] Zhang [18] Shen [20] CGF

Fig. 5: Major Structure Extraction. The image of Xu and Zhang are subscribed to authors. Other results are yielded by
Shen(ε1 = ε2 = 0.001, λ = β = 5), (40)(r = 6, ε = 0.01), CGF(r = 6, ε = 0.001, λ = 0.01).

Flash No-Flash Zhou [29] Seo [16] RFNF

Fig. 6: Flash/No-flash Deblurring. From left to right, the images are flash image, non-flash image and results yield by Zhou,
Seo and RFNF, where the image of Zhou suffers from over-saturated regions in the blurred image.

[20]. The results of Xu and Zhang are much better than (40).
This is because Xu designs a relative total variation term to
extract main structures and suppress textures. Different from
Xu, Zhang designs a new filter and employs it to filter images
with the complete control of detail smoothing under a scale
measure. However, taking a close look at their results, we can
easily find that the two methods could not distinguish major
structures from textures very well and thus not only leave
details in the major structures but also blur some important
major structures. To solve this problem, Shen proposes mutual-
structure for joint filtering. Although the method of Shen can
produce the same results as the GF based RMSF, our CGF
based RMSF derived from the GF based RMSF are able to
remove textures more clearly. More importantly, we provide a
more elegant and general way to deal with this task.

F. Flash/No-Flash Deblurring

Motion blur due to camera shake is an annoying problem
while taking pictures. Our generalized Rolling Flash/No-Flash

Filtering (RFNF) can be applied to flash/no-flash deblurring.
The method of Zhou et al. [29] as well as the method (41) of
Seo [16] are used to perform comparison. Fig 6 illustrates the
results of three methods, where no-flash images suffer from
mild noise and strong motion blur. As shown in the close-
ups, our method outperforms the method of Zhou by obtaining
much finer details with better color contrast even though our
method does not estimate a blur kernel at all. In addition,
compared with our method, Zhou’s method also suffers from
over-saturated regions in the blurred image. Unlike Zhou, the
results of Seo are rather satisfactory. However, their edges are
not as sharp as ours.

VI. CONCLUSION AND FUTURE WORK

The major contribution of our work is to disclose the
equivalence between the guided filter and the cyclic coordinate
descent solver of a least squares optimization. The equivalence
provides us new insight on how to extend the guided filter as
well as the rolling filtering scheme. Specifically, employing
the equivalence, we define the guided filter as the first pass
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iteration of the cyclic coordinate descent solver and derive
new rolling filtering scheme from the minimizing procedure.
In addition, we modify the objective function of the guided
filter and obtain several GF-like filters and two rolling filtering
usages from new objective functions.

In this paper, totally five GF-like filters( i.e. SGF, TVGF,
CGF, IGF, ICGF) and two rolling filtering schemes (i.e.
CGF-RMSF and RFNF) are proposed. We conduct extensive
experiments to disclose/verify the smoothing property/ability
of these filters and rolling filtering schemes. Experimental
results prove their advantages.

However, we think that these achievements should not be
the limit of the power of the connection between the guided
filter and the cyclic coordinate descent. Our future work will
be devoted to deriving more GF-like filters as well as their
rolling schemes according to new objective functions adapted
to various tasks in computer vision and graphics. Other
than the filtering quality, the smoothing efficiency is another
critical problem. We will incorporate with the acceleration
technique [30] to speed up proposed GF-like filters and rolling
filtering schemes.
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